Suppr超能文献

重金属胁迫与丛枝菌根真菌的发育模式

Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi.

作者信息

Pawlowska Teresa E, Charvat Iris

机构信息

Department of Plant Biology, University of Minnesota, St. Paul, USA.

出版信息

Appl Environ Microbiol. 2004 Nov;70(11):6643-9. doi: 10.1128/AEM.70.11.6643-6649.2004.

Abstract

The rate of global deposition of Cd, Pb, and Zn has decreased over the past few decades, but heavy metals already in the soil may be mobilized by local and global changes in soil conditions and exert toxic effects on soil microorganisms. We examined in vitro effects of Cd, Pb, and Zn on critical life stages in metal-sensitive ecotypes of arbuscular mycorrhizal (AM) fungi, including spore germination, presymbiotic hyphal extension, presymbiotic sporulation, symbiotic extraradical mycelium expansion, and symbiotic sporulation. Despite long-term culturing under the same low-metal conditions, two species, Glomus etunicatum and Glomus intraradices, had different levels of sensitivity to metal stress. G. etunicatum was more sensitive to all three metals than was G. intraradices. A unique response of increased presymbiotic hyphal extension occurred in G. intraradices exposed to Cd and Pb. Presymbiotic hyphae of G. intraradices formed presymbiotic spores, whose initiation was more affected by heavy metals than was presymbiotic hyphal extension. In G. intraradices grown in compartmentalized habitats with only a portion of the extraradical mycelium exposed to metal stress, inhibitory effects of elevated metal concentrations on symbiotic mycelial expansion and symbiotic sporulation were limited to the metal-enriched compartment. Symbiotic sporulation was more sensitive to metal exposure than symbiotic mycelium expansion. Patterns exhibited by G. intraradices spore germination, presymbiotic hyphal extension, symbiotic extraradical mycelium expansion, and sporulation under elevated metal concentrations suggest that AM fungi may be able to survive in heavy metal-contaminated environments by using a metal avoidance strategy.

摘要

在过去几十年中,镉、铅和锌的全球沉降速率有所下降,但土壤中已有的重金属可能会因土壤条件的局部和全球变化而被活化,从而对土壤微生物产生毒性作用。我们研究了镉、铅和锌对丛枝菌根(AM)真菌金属敏感生态型关键生命阶段的体外影响,包括孢子萌发、共生前菌丝延伸、共生前产孢、共生根外菌丝体扩展和共生产孢。尽管在相同的低金属条件下长期培养,两种球囊霉,即珠状巨孢囊霉和根内球囊霉,对金属胁迫的敏感程度不同。珠状巨孢囊霉对所有三种金属的敏感性均高于根内球囊霉。在暴露于镉和铅的根内球囊霉中,出现了共生前菌丝延伸增加的独特反应。根内球囊霉的共生前菌丝形成了共生前孢子,其起始比共生前菌丝延伸更容易受到重金属的影响。在仅部分根外菌丝体暴露于金属胁迫的分隔生境中生长的根内球囊霉中,金属浓度升高对共生菌丝体扩展和共生产孢的抑制作用仅限于富含金属的隔室。共生产孢比共生菌丝体扩展对金属暴露更敏感。根内球囊霉在金属浓度升高时孢子萌发、共生前菌丝延伸、共生根外菌丝体扩展和产孢的模式表明,AM真菌可能能够通过采用金属回避策略在重金属污染环境中生存。

相似文献

1
Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi.
Appl Environ Microbiol. 2004 Nov;70(11):6643-9. doi: 10.1128/AEM.70.11.6643-6649.2004.
5
Response to cadmium of Daucus carota hairy roots dual cultures with Glomus intraradices or Gigaspora margarita.
Mycorrhiza. 2005 May;15(3):217-24. doi: 10.1007/s00572-004-0325-2. Epub 2004 Oct 28.
6
Effects of prometryn and acetochlor on arbuscular mycorrhizal fungi and symbiotic system.
Lett Appl Microbiol. 2013 Aug;57(2):122-8. doi: 10.1111/lam.12084. Epub 2013 May 16.
9
Fungal lipid accumulation and development of mycelial structures by two arbuscular mycorrhizal fungi.
Appl Environ Microbiol. 2003 Nov;69(11):6762-7. doi: 10.1128/AEM.69.11.6762-6767.2003.
10
Interactions between arbuscular mycorrhizae and heavy metals under sand culture experiment.
Chemosphere. 2003 Feb;50(6):847-53. doi: 10.1016/s0045-6535(02)00229-1.

引用本文的文献

1
Lead (Pb) tolerance in the ectomycorrhizal fungi Suillus brevipes and S. tomentosus.
Mycorrhiza. 2024 Dec 21;35(1):6. doi: 10.1007/s00572-024-01179-z.
2
Impact of zinc on arbuscular mycorrhizal-mediated nutrient acquisition in urban horticulture.
iScience. 2024 Jul 25;27(8):110580. doi: 10.1016/j.isci.2024.110580. eCollection 2024 Aug 16.
4
Mycorrhizal fungal communities associated with three metal accumulator plants growing in an abandoned Pb smelting factory.
Braz J Microbiol. 2023 Dec;54(4):2979-2990. doi: 10.1007/s42770-023-01147-3. Epub 2023 Oct 21.
6
Soil Mercury Pollution Changes Soil Arbuscular Mycorrhizal Fungal Community Composition.
J Fungi (Basel). 2023 Mar 23;9(4):395. doi: 10.3390/jof9040395.
9
Effect of Arbuscular Mycorrhizal Colonization on Cadmium-Mediated Oxidative Stress in (L.) Merr.
Plants (Basel). 2020 Jan 15;9(1):108. doi: 10.3390/plants9010108.
10
The counter defence system of antioxidants in Coelomycetous emerging human and plant pathogenic fungus Macrophomina phaseolina against copper toxicity.
Environ Sci Pollut Res Int. 2020 Jan;27(1):597-606. doi: 10.1007/s11356-019-06929-7. Epub 2019 Dec 5.

本文引用的文献

1
Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots.
New Phytol. 1988 Feb;108(2):211-218. doi: 10.1111/j.1469-8137.1988.tb03698.x.
2
Survival of Acer pseudoplatanus L. (sycamore) seedlings on metalliferous soils.
New Phytol. 1993 Mar;123(3):509-521. doi: 10.1111/j.1469-8137.1993.tb03763.x.
3
Sensitivity of Various Bacteria, Including Actinomycetes, and Fungi to Cadmium and the Influence of pH on Sensitivity.
Appl Environ Microbiol. 1977 Mar;33(3):681-95. doi: 10.1128/aem.33.3.681-695.1977.
4
Influences of anthropogenic pollution on mycorrhizal fungal communities.
Environ Pollut. 1999 Aug;106(2):169-82. doi: 10.1016/s0269-7491(99)00081-0.
5
The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations.
Mycol Res. 2003 Nov;107(Pt 11):1253-65. doi: 10.1017/s0953756203008608.
7
The distribution of mercury and other trace metals in the sediments of the Mersey Estuary over 25 years 1974-1998.
Sci Total Environ. 2000 May 15;253(1-3):45-62. doi: 10.1016/s0048-9697(00)00374-0.
8
Effects of zinc-smelter emissions on forest soil microflora.
Can J Microbiol. 1975 Nov;21(11):1855-65. doi: 10.1139/m75-269.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验