Suppr超能文献

对整个人类基因组进行启动子预测分析。

Promoter prediction analysis on the whole human genome.

作者信息

Bajic Vladimir B, Tan Sin Lam, Suzuki Yutaka, Sugano Sumio

机构信息

Institute for Infocomm Research, 21 Heng Mui Keng Terrace, 119613 Singapore.

出版信息

Nat Biotechnol. 2004 Nov;22(11):1467-73. doi: 10.1038/nbt1032.

Abstract

Promoter prediction programs (PPPs) are important for in silico gene discovery without support from expressed sequence tag (EST)/cDNA/mRNA sequences, in the analysis of gene regulation and in genome annotation. Contrary to previous expectations, a comprehensive analysis of PPPs reveals that no program simultaneously achieves sensitivity and a positive predictive value >65%. PPP performances deduced from a limited number of chromosomes or smaller data sets do not hold when evaluated at the level of the whole genome, with serious inaccuracy of predictions for non-CpG-island-related promoters. Some PPPs even perform worse than, or close to, pure random guessing.

摘要

启动子预测程序(PPPs)对于在没有表达序列标签(EST)/cDNA/mRNA序列支持的情况下进行计算机基因发现、基因调控分析和基因组注释非常重要。与先前的预期相反,对PPPs的全面分析表明,没有一个程序能同时实现敏感性和大于65%的阳性预测值。从有限数量的染色体或较小数据集推导出来的PPPs性能,在全基因组水平评估时并不成立,对于非CpG岛相关启动子的预测存在严重不准确。一些PPPs甚至比纯随机猜测表现更差或接近纯随机猜测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验