Suppr超能文献

Reversal of muscle fatigue during 16 h of heavy intermittent cycle exercise.

作者信息

Green H J, Duhamel T A, Ferth S, Holloway G P, Thomas M M, Tupling A R, Rich S M, Yau J E

机构信息

Dept. of Kinesiology, Universiy of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

出版信息

J Appl Physiol (1985). 2004 Dec;97(6):2166-75. doi: 10.1152/japplphysiol.00565.2004.

Abstract

This study examined the effects of extended sessions of heavy intermittent exercise on quadriceps muscle fatigue and weakness. Twelve untrained volunteers (10 men and 2 women), with a peak oxygen consumption of 44.3 +/- 2.3 ml.kg(-1).min(-1), exercised at approximately 91% peak oxygen consumption for 6 min once per hour for 16 h. Muscle isometric properties assessed before and after selected repetitions (R1, R2, R4, R7, R12, and R15) were used to quantitate fatigue (before vs. after repetitions) and weakness (before vs. before repetitions). Muscle fatigue at R1 was indicated by reductions (P < 0.05) in peak twitch force (135 +/- 13 vs. 106 +/- 11 N) and by a reduction (P < 0.05) in the force-frequency response, which ranged between approximately 53% at 10 Hz (113 +/- 12 vs. 52.6 +/- 7.4 N) and approximately 17% at 50 Hz (324 +/- 27 vs. 270 +/- 30 N). No recovery of force, regardless of stimulation frequency, was observed during the 54 min between R1 and R2. At R2 and for all subsequent repetitions, no reduction in force, regardless of stimulation frequency, was generally found after the exercise. The only exception was for R2, where, at 20 Hz, force was reduced (P < 0.05) by 18%. At R15, force before repetitions for high frequencies (i.e., 100 Hz) returned to R1 (333 +/- 29 vs. 324 +/- 27 N), whereas force at low frequency (i.e., 10 Hz) was only partially (P < 0.05) recovered (113 +/- 12 vs. 70 +/- 6.6 N). It is concluded that multiple sessions of heavy exercise can reverse the fatigue noted early and reduce or eliminate weakness depending on the frequency of stimulation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验