Suppr超能文献

随机效应Cox比例风险模型:用于事件发生时间数据的一般方差分量方法。

Random-effects Cox proportional hazards model: general variance components methods for time-to-event data.

作者信息

Pankratz V Shane, de Andrade Mariza, Therneau Terry M

机构信息

Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

Genet Epidemiol. 2005 Feb;28(2):97-109. doi: 10.1002/gepi.20043.

Abstract

Proportional hazards regression models are commonly used to study factors associated with time-to-event data. Because many complex genetic diseases exhibit variation in age at onset, it is important to have the capability to perform survival analyses on data collected from individuals whose observations are correlated due to shared genes or environment. While there are widely accepted methods for variance components analysis for simple quantitative traits, a parallel methodology for survival data has not been available. This manuscript outlines a method to perform variance component analyses under general random effects proportional hazards models. This method is based on a Laplace approximation, and makes computation for correlated time-to-event data feasible. The correlated frailty models described here can be used to perform genetic analyses, and other analyses with structured random effects, on age-at-onset data in a manner analogous to standard variance components methods for quantitative traits. We illustrate the use of the method by examining the heritability of breast cancer in a large familial cohort study. We also perform variance components linkage analyses on data simulated for the Twelfth Genetic Analysis Workshop (GAW12), and further examine the performance of this method for linkage analysis in a simulation study. The breast cancer analyses support significant heritability of disease age-at-onset that is of moderate size. The variance component linkage analyses successfully identify the location of the disease genes that were simulated to have a direct impact on age-at-onset. The methods outlined here make it possible to perform general variance components analyses on time-to-event endpoints, even on large data sets, in a computationally efficient manner.

摘要

比例风险回归模型常用于研究与事件发生时间数据相关的因素。由于许多复杂的遗传疾病在发病年龄上存在差异,因此有能力对因共享基因或环境而使观察结果相关的个体所收集的数据进行生存分析非常重要。虽然对于简单的数量性状存在广泛接受的方差成分分析方法,但尚未有适用于生存数据的并行方法。本论文概述了一种在一般随机效应比例风险模型下进行方差成分分析的方法。该方法基于拉普拉斯近似,使相关事件发生时间数据的计算变得可行。这里描述的相关脆弱性模型可用于对发病年龄数据进行遗传分析以及其他具有结构化随机效应的分析,其方式类似于用于数量性状的标准方差成分方法。我们通过在一项大型家族队列研究中检验乳腺癌的遗传度来说明该方法的应用。我们还对为第十二届遗传分析研讨会(GAW12)模拟的数据进行方差成分连锁分析,并在模拟研究中进一步检验该方法在连锁分析中的性能。乳腺癌分析支持疾病发病年龄具有显著的中等程度遗传度。方差成分连锁分析成功识别出模拟为对发病年龄有直接影响的疾病基因的位置。这里概述的方法能够以计算高效的方式对事件发生时间终点进行一般方差成分分析,即使是针对大型数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验