Suppr超能文献

使用主成分探索多效性。

Exploring pleiotropy using principal components.

作者信息

Bensen Jeannette T, Lange Leslie A, Langefeld Carl D, Chang Bao-Li, Bleecker Eugene R, Meyers Deborah A, Xu Jianfeng

机构信息

Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.

出版信息

BMC Genet. 2003 Dec 31;4 Suppl 1(Suppl 1):S53. doi: 10.1186/1471-2156-4-S1-S53.

Abstract

A standard multivariate principal components (PCs) method was utilized to identify clusters of variables that may be controlled by a common gene or genes (pleiotropy). Heritability estimates were obtained and linkage analyses performed on six individual traits (total cholesterol (Chol), high and low density lipoproteins, triglycerides (TG), body mass index (BMI), and systolic blood pressure (SBP)) and on each PC to compare our ability to identify major gene effects. Using the simulated data from Genetic Analysis Workshop 13 (Cohort 1 and 2 data for year 11), the quantitative traits were first adjusted for age, sex, and smoking (cigarettes per day). Adjusted variables were standardized and PCs calculated followed by orthogonal transformation (varimax rotation). Rotated PCs were then subjected to heritability and quantitative multipoint linkage analysis. The first three PCs explained 73% of the total phenotypic variance. Heritability estimates were above 0.60 for all three PCs. We performed linkage analyses on the PCs as well as the individual traits. The majority of pleiotropic and trait-specific genes were not identified. Standard PCs analysis methods did not facilitate the identification of pleiotropic genes affecting the six traits examined in the simulated data set. In addition, genes contributing 20% of the variance in traits with over 0.60 heritability estimates could not be identified in this simulated data set using traditional quantitative trait linkage analyses. Lack of identification of pleiotropic and trait-specific genes in some cases may reflect their low contribution to the traits/PCs examined or more importantly, characteristics of the sample group analyzed, and not simply a failure of the PC approach itself.

摘要

采用标准的多变量主成分(PC)方法来识别可能受一个或多个共同基因控制的变量簇(基因多效性)。获得了遗传力估计值,并对六个个体性状(总胆固醇(Chol)、高密度和低密度脂蛋白、甘油三酯(TG)、体重指数(BMI)和收缩压(SBP))以及每个主成分进行了连锁分析,以比较我们识别主要基因效应的能力。使用遗传分析研讨会13的模拟数据(第11年的队列1和队列2数据),首先对定量性状进行年龄、性别和吸烟(每天吸烟支数)的校正。对校正后的变量进行标准化,并计算主成分,随后进行正交变换(方差最大化旋转)。然后对旋转后的主成分进行遗传力和定量多点连锁分析。前三个主成分解释了总表型变异的73%。所有三个主成分的遗传力估计值均高于0.60。我们对主成分以及个体性状进行了连锁分析。大多数基因多效性和性状特异性基因未被识别。标准的主成分分析方法不利于识别影响模拟数据集中所检测的六个性状的基因多效性基因。此外,在该模拟数据集中,使用传统的数量性状连锁分析无法识别对遗传力估计值超过0.60的性状贡献20%变异的基因。在某些情况下未能识别基因多效性和性状特异性基因,可能反映了它们对所检测的性状/主成分的贡献较低,或者更重要的是,所分析样本组的特征,而不仅仅是主成分分析方法本身的失败。

相似文献

1
Exploring pleiotropy using principal components.使用主成分探索多效性。
BMC Genet. 2003 Dec 31;4 Suppl 1(Suppl 1):S53. doi: 10.1186/1471-2156-4-S1-S53.
3
Group 6: Pleiotropy and multivariate analysis.第6组:多效性与多变量分析。
Genet Epidemiol. 2003;25 Suppl 1:S50-6. doi: 10.1002/gepi.10284.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验