Li Qianshu, Gong Liangfa, Xie Yaoming, Schaefer Henry F
Department of Chemistry, School of Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China.
J Am Chem Soc. 2004 Nov 17;126(45):14950-9. doi: 10.1021/ja040110w.
Five different pure density functional theory (DFT) and hybrid Hartree-Fock/DFT methods have been used to search for the molecular structures, thermochemistry, and electron affinities of the bromine hydrogen fluorides HBrF(n)/HBrF(n)(-) (n = 2, 4). The basis sets used in this work are of double-zeta plus polarization quality in conjunction with s- and p-type diffuse functions, labeled as DZP++. Structures with Br-F and Br-H normal bonds, that is, HBrF(2)/HBrF(2)(-) with C(2v) or C(s) symmetry and HBrF(4)/HBrF(4)(-) with C(4v) or C(s) symmetry, are genuine minima. However, unlike the original BrF(3) and BrF(5) molecules, the global minima for HBrF(n)/HBrF(n)(-) (n = 2, 4) species are predicted to be complexes, some of which contain hydrogen bonds. The demise of the hypervalent structures is due to the availability of favorable dissociation products involving HF, which has a much larger dissociation energy than F(2). Similar reasoning suggests that PF(4)H, SF(3)H, SF(5)H, ClF(2)H, ClF(4)H, AsF(4)H, SeF(3)H, and SeF(5)H will all be hydrogen bond structures incorporating diatomic HF. The most reasonable theoretical values of the adiabatic electron affinities (EA(ad)) are 3.69 (HBrF(2)) and 4.38 eV (HBrF(4)) with the BHLYP method. These electron affinities are comparable to those of the analogous molecules: Br(2)F(n), ClBrF(n), and BrF(n)(+1) systems. The first F-atom dissociation energies for the neutral global minima are 60 (HBrF(2)) and 49 kcal/mol (HBrF(4)) with the B3LYP method. The first H-atom dissociation energies for the same systems are 109 (HBrF(2)) and 116 kcal/mol (HBrF(4)). The large Br-H bond energies are not sufficient to render the hypervalent structures energetically tenable. The dissociation energies for the complexes to their fragments are relatively small.
采用了五种不同的纯密度泛函理论(DFT)和混合Hartree-Fock/DFT方法来寻找溴氟化氢HBrF(n)/HBrF(n)(-)(n = 2, 4)的分子结构、热化学性质和电子亲和能。本工作中使用的基组具有双ζ加极化质量,并结合了s型和p型弥散函数,标记为DZP++。具有Br-F和Br-H正常键的结构,即具有C(2v)或C(s)对称性的HBrF(2)/HBrF(2)(-)以及具有C(4v)或C(s)对称性的HBrF(4)/HBrF(4)(-),是真正的极小值。然而,与原始的BrF(3)和BrF(5)分子不同,HBrF(n)/HBrF(n)(-)(n = 2, 4)物种的全局极小值预计为复合物,其中一些包含氢键。高价结构的消失是由于涉及HF的有利解离产物的存在,HF的解离能比F(2)大得多。类似的推理表明,PF(4)H、SF(3)H、SF(5)H、ClF(2)H、ClF(4)H、AsF(4)H、SeF(3)H和SeF(5)H都将是包含双原子HF的氢键结构。采用BHLYP方法时,绝热电子亲和能(EA(ad))的最合理理论值为3.69(HBrF(2))和4.38 eV(HBrF(4))。这些电子亲和能与类似分子:Br(2)F(n)、ClBrF(n)和BrF(n)(+1)体系的电子亲和能相当。采用B3LYP方法时,中性全局极小值的第一个F原子解离能为60(HBrF(2))和49 kcal/mol(HBrF(4))。相同体系的第一个H原子解离能为109(HBrF(2))和116 kcal/mol(HBrF(4))。较大的Br-H键能不足以使高价结构在能量上成立。复合物分解为其碎片的解离能相对较小。