Monleón Daniel, Esteve Vicent, Kovacs Helena, Calvete Juan J, Celda Bernardo
Departamento de Química Física, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
Biochem J. 2005 Apr 1;387(Pt 1):57-66. doi: 10.1042/BJ20041343.
Echistatin is a potent antagonist of the integrins alpha(v)beta3, alpha5beta1 and alpha(IIb)beta3. Its full inhibitory activity depends on an RGD (Arg-Gly-Asp) motif expressed at the tip of the integrin-binding loop and on its C-terminal tail. Previous NMR structures of echistatin showed a poorly defined integrin-recognition sequence and an incomplete C-terminal tail, which left the molecular basis of the functional synergy between the RGD loop and the C-terminal region unresolved. We report a high-resolution structure of echistatin and an analysis of its internal motions by off-resonance ROESY (rotating-frame Overhauser enhancement spectroscopy). The full-length C-terminal polypeptide is visible as a beta-hairpin running parallel to the RGD loop and exposing at the tip residues Pro43, His44 and Lys45. The side chains of the amino acids of the RGD motif have well-defined conformations. The integrin-binding loop displays an overall movement with maximal amplitude of 30 degrees . Internal angular motions in the 100-300 ps timescale indicate increased flexibility for the backbone atoms at the base of the integrin-recognition loop. In addition, backbone atoms of the amino acids Ala23 (flanking the R24GD26 tripeptide) and Asp26 of the integrin-binding motif showed increased angular mobility, suggesting the existence of major and minor hinge effects at the base and the tip, respectively, of the RGD loop. A strong network of NOEs (nuclear Overhauser effects) between residues of the RGD loop and the C-terminal tail indicate concerted motions between these two functional regions. A full-length echistatin-alpha(v)beta3 docking model suggests that echistatin's C-terminal amino acids may contact alpha(v)-subunit residues and provides new insights to delineate structure-function correlations.
水蛭素是整合素α(v)β3、α5β1和α(IIb)β3的强效拮抗剂。其完全抑制活性取决于整合素结合环末端表达的RGD(精氨酸-甘氨酸-天冬氨酸)基序及其C末端尾巴。先前水蛭素的核磁共振结构显示整合素识别序列定义不明确且C末端尾巴不完整,这使得RGD环与C末端区域之间功能协同作用的分子基础尚未得到解决。我们报告了水蛭素的高分辨率结构,并通过非共振旋转框架Overhauser增强光谱(ROESY)对其内部运动进行了分析。全长C末端多肽呈现为与RGD环平行的β发夹结构,并在末端暴露脯氨酸43、组氨酸44和赖氨酸45残基。RGD基序氨基酸的侧链具有明确的构象。整合素结合环显示出总体运动,最大振幅为30度。在100 - 300皮秒时间尺度内的内部角运动表明,整合素识别环基部的主链原子柔韧性增加。此外,整合素结合基序中氨基酸丙氨酸23(位于R24GD26三肽侧翼)和天冬氨酸26的主链原子显示出角运动性增加,这表明RGD环的基部和末端分别存在主要和次要的铰链效应。RGD环与C末端尾巴残基之间存在强大的核Overhauser效应(NOE)网络,表明这两个功能区域之间存在协同运动。全长水蛭素-α(v)β3对接模型表明,水蛭素的C末端氨基酸可能与α(v)亚基残基接触,并为描绘结构-功能相关性提供了新的见解。