Kharasch Evan D, Walker Alysa, Hoffer Christine, Sheffels Pamela
Department of Anesthesiology, University of Washington, Seattle, 98195, USA.
Clin Pharmacol Ther. 2004 Nov;76(5):452-66. doi: 10.1016/j.clpt.2004.07.006.
Systemic clearance of intravenous (IV) alfentanil (ALF) is an in vivo probe for hepatic cytochrome P450 (CYP) 3A activity, miosis is a surrogate for plasma ALF concentrations, and IV ALF miosis is a noninvasive probe for hepatic CYP3A. This investigation characterized the bioavailability and first-pass metabolism of oral ALF and tested the hypotheses that (1) first-pass ALF clearance reflects first-pass CYP3A activity, (2) miosis after oral ALF will reflect intestinal and hepatic CYP3A activity, and (3) miosis can approximate plasma concentration-based pharmacokinetic measures for IV and oral ALF as a noninvasive in vivo probe for hepatic and first-pass CYP3A activity and drug interactions. Results were compared with those for midazolam (MDZ), an alternative CYP3A probe.
Ten volunteers were studied by use of a randomized, 9-way, crossover design after administration of rifampin (INN, rifampicin) (hepatic and intestinal CYP3A induction), troleandomycin (TAO) (hepatic and intestinal CYP3A inhibition), grapefruit juice (selective intestine CYP3A inhibition), or nothing (control). For each condition, they received 1 mg IV MDZ and then 15 microg/kg IV ALF, as well as 3 mg oral MDZ and then oral ALF (23 or 60 microg/kg) on another day. Plasma concentrations were determined by liquid chromatography-mass spectrometry. Dark-adapted pupil diameters were measured coincident with blood sampling. ALF effect was analyzed similarly to concentration to yield an effect "clearance" (Dose/Area under the pupil diameter change versus time curve).
Bioavailability (Foral), hepatic extraction (EH), and intestinal availability (FG) were 0.26 +/- 0.08, 0.52 +/- 0.09, and 0.56 +/- 0.20, respectively, for MDZ and 0.42 +/- 0.15, 0.28 +/- 0.09, and 0.56 +/- 0.18, respectively, for ALF. Oral clearance (CL/F) was 34.7 +/- 12.8 and 10.9 +/- 3.5 mL.kg -1.min -1 , respectively, for MDZ and ALF. After rifampin, TAO, and grapefruit juice, ALF F oral was 0.04 +/- 0.02 (P <.05, versus control), 0.99 +/- 0.18 (P <.05, versus control), and 0.62 +/- 0.18 (P <.05, versus control), respectively; E H was 0.69 +/- 0.14 (P < .05, versus control), 0.04 +/- 0.01 (P <.05, versus control), and 0.26 +/- 0.08, respectively; F G was 0.16 +/- 0.10 (P <.05, versus control), 1.0 +/- 0.2 (P <.05, versus control), and 0.85 +/- 0.30 (P <.05, versus control), respectively; CL/F was 339 +/- 233 (P <.05, versus control), 0.62 +/- 0.26 (P <.05, versus control), and 6.7 +/- 2.5 (P <.05, versus control), respectively, and effect clearance was 2.1 +/- 1.1 (P <.05, versus control), 0.087 +/- 0.056 (P <.05, versus control), and 0.54 +/- 0.30 (0.73 +/- 0.43 mg.mm -1.h -1 in controls), respectively. There were significant correlations between ALF and MDZ systemic clearances (r2= 0.92), EH (r2=0.93), and CL/F (r2= 0.97), as well as between oral ALF effect (miosis) clearance and oral clearance (r2=0.59).
ALF and MDZ have similar intestinal extraction but low and intermediate hepatic extraction, respectively. Systemic and oral clearances of ALF are excellent in vivo probes for hepatic and first-pass CYP3A activities and drug interactions. Miosis was an acceptable surrogate for plasma ALF. ALF miosis may be a suitable noninvasive in vivo probe for both hepatic and first-pass CYP3A.
静脉注射阿芬太尼(ALF)的全身清除率是肝细胞色素P450(CYP)3A活性的体内探针,瞳孔缩小是血浆阿芬太尼浓度的替代指标,静脉注射阿芬太尼导致的瞳孔缩小是肝CYP3A的非侵入性探针。本研究对口服阿芬太尼的生物利用度和首过代谢进行了表征,并检验了以下假设:(1)阿芬太尼首过清除率反映首过CYP3A活性;(2)口服阿芬太尼后的瞳孔缩小反映肠道和肝脏CYP3A活性;(3)作为肝和首过CYP3A活性及药物相互作用的非侵入性体内探针,瞳孔缩小可近似基于血浆浓度的静脉注射和口服阿芬太尼的药代动力学指标。将结果与另一种CYP3A探针咪达唑仑(MDZ)的结果进行了比较。
采用随机、9交叉设计对10名志愿者进行研究,分别给予利福平(国际非专利药品名称,利福平)(诱导肝和肠道CYP3A)、醋竹桃霉素(TAO)(抑制肝和肠道CYP3A)、葡萄柚汁(选择性抑制肠道CYP3A)或不给予任何处理(对照)。对于每种情况,他们先接受1mg静脉注射咪达唑仑,然后接受15μg/kg静脉注射阿芬太尼,另一天再接受3mg口服咪达唑仑,然后口服阿芬太尼(23或60μg/kg)。通过液相色谱 - 质谱法测定血浆浓度。在采血的同时测量暗适应瞳孔直径。对阿芬太尼效应的分析方法与浓度分析类似,以得出效应“清除率”(剂量/瞳孔直径变化与时间曲线下面积)。
咪达唑仑的生物利用度(Foral)、肝提取率(EH)和肠道利用率(FG)分别为0.26±0.08、0.52±0.09和0.56±0.20,阿芬太尼的分别为0.42±0.15、0.28±0.09和0.56±0.18。咪达唑仑和阿芬太尼的口服清除率(CL/F)分别为34.7±12.8和10.9±3.5 mL·kg-1·min-1。给予利福平、TAO和葡萄柚汁后,阿芬太尼的口服F值分别为0.04±0.02(P<.05,与对照相比)、0.99±0.18(P<.05,与对照相比)和0.62±0.18(P<.05,与对照相比);EH分别为0.69±0.14(P<.05,与对照相比)、0.04±0.01(P<.05,与对照相比)和0.26±0.08;FG分别为0.16±0.10(P<.05,与对照相比)、1.0±0.2(P<.05,与对照相比)和0.85±0.30(P<.05,与对照相比);CL/F分别为339±233(P<.05,与对照相比)、0.62±0.26(P<.05,与对照相比)和6.7±2.5(P<.05,与对照相比),效应清除率分别为2.1±1.1(P<.05,与对照相比)、0.087±0.056(P<.05,与对照相比)和0.54±0.30(对照为0.73±0.43mg·mm-1·h-1)。阿芬太尼和咪达唑仑的全身清除率(r2 = 0.92)、EH(r2 = 0.93)和CL/F(r2 = 0.97)之间,以及口服阿芬太尼效应(瞳孔缩小)清除率和口服清除率之间(r2 = 0.59)均存在显著相关性。
阿芬太尼和咪达唑仑的肠道提取率相似,但肝提取率分别较低和中等。阿芬太尼的全身和口服清除率是肝和首过CYP3A活性及药物相互作用的优良体内探针。瞳孔缩小是血浆阿芬太尼可接受的替代指标。阿芬太尼导致的瞳孔缩小可能是肝和首过CYP3A合适的非侵入性体内探针。