Johansson Eva, Fanø Mathias, Bynck Julie H, Neuhard Jan, Larsen Sine, Sigurskjold Bent W, Christensen Ulla, Willemoës Martin
Centre for Crystallographic Studies, Department of Chemistry, University of Copenhagen Universitetsparken 5, DK-2100, Copenhagen, Denmark.
J Biol Chem. 2005 Jan 28;280(4):3051-9. doi: 10.1074/jbc.M409534200. Epub 2004 Nov 10.
dCTP deaminase (EC 3.5.4.13) catalyzes the deamination of dCTP forming dUTP that via dUTPase is the main pathway providing substrate for thymidylate synthase in Escherichia coli and Salmonella typhimurium. dCTP deaminase is unique among nucleoside and nucleotide deaminases as it functions without aid from a catalytic metal ion that facilitates preparation of a water molecule for nucleophilic attack on the substrate. Two active site amino acid residues, Arg(115) and Glu(138), were identified by mutational analysis as important for activity in E. coli dCTP deaminase. None of the mutant enzymes R115A, E138A, or E138Q had any detectable activity but circular dichroism spectra for all mutant enzymes were similar to wild type suggesting that the overall structure was not changed. The crystal structures of wild-type E. coli dCTP deaminase and the E138A mutant enzyme have been determined in complex with dUTP and Mg(2+), and the mutant enzyme also with the substrate dCTP and Mg(2+). The enzyme is a third member of the family of the structurally related trimeric dUTPases and the bifunctional dCTP deaminase-dUTPase from Methanocaldococcus jannaschii. However, the C-terminal fold is completely different from dUTPases resulting in an active site built from residues from two of the trimer subunits, and not from three subunits as in dUTPases. The nucleotides are well defined as well as Mg(2+) that is tridentately coordinated to the nucleotide phosphate chains. We suggest a catalytic mechanism for the dCTP deaminase and identify structural differences to dUTPases that prevent hydrolysis of the dCTP triphosphate.
脱氧胞苷三磷酸脱氨酶(EC 3.5.4.13)催化脱氧胞苷三磷酸(dCTP)脱氨形成脱氧尿苷三磷酸(dUTP),在大肠杆菌和鼠伤寒沙门氏菌中,dUTP通过脱氧尿苷三磷酸酶是为胸苷酸合成酶提供底物的主要途径。脱氧胞苷三磷酸脱氨酶在核苷和核苷酸脱氨酶中是独特的,因为它在没有催化金属离子帮助的情况下发挥作用,催化金属离子有助于准备一个水分子对底物进行亲核攻击。通过突变分析确定了两个活性位点氨基酸残基,即大肠杆菌脱氧胞苷三磷酸脱氨酶中的精氨酸(115)和谷氨酸(138),对其活性很重要。突变酶R115A、E138A或E138Q均无任何可检测到的活性,但所有突变酶的圆二色光谱与野生型相似,表明整体结构未改变。已确定野生型大肠杆菌脱氧胞苷三磷酸脱氨酶和E138A突变酶与dUTP和镁离子(Mg²⁺)形成复合物的晶体结构,以及突变酶与底物dCTP和Mg²⁺形成复合物的晶体结构。该酶是结构相关的三聚体脱氧尿苷三磷酸酶家族的第三个成员,也是詹氏甲烷球菌的双功能脱氧胞苷三磷酸脱氨酶 - 脱氧尿苷三磷酸酶。然而,其C末端折叠与脱氧尿苷三磷酸酶完全不同,导致活性位点由三聚体两个亚基的残基构成,而不像脱氧尿苷三磷酸酶那样由三个亚基构成。核苷酸以及与核苷酸磷酸链三齿配位的Mg²⁺都界定明确。我们提出了脱氧胞苷三磷酸脱氨酶的催化机制,并确定了与脱氧尿苷三磷酸酶的结构差异,这些差异可防止脱氧胞苷三磷酸水解。