Huffman Joy L, Li Hong, White Robert H, Tainer John A
Department of Molecular Biology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037-1027, USA.
J Mol Biol. 2003 Aug 22;331(4):885-96. doi: 10.1016/s0022-2836(03)00789-7.
Potentially mutagenic uracil-containing nucleotide intermediates are generated by deamination of dCTP, either spontaneously or enzymatically as the first step in the conversion of dCTP to dTTP. dUTPases convert dUTP to dUMP, thus avoiding the misincorporation of dUTP into DNA and creating the substrate for the next enzyme in the dTTP synthetic pathway, thymidylate synthase. Although dCTP deaminase and dUTPase activities are usually found in separate but homologous enzymes, the hyperthermophile Methanococcus jannaschii has an enzyme, DCD-DUT, that harbors both dCTP deaminase and dUTP pyrophosphatase activities. DCD-DUT has highest activity on dCTP, followed by dUTP, and dTTP inhibits both the deaminase and pyrophosphatase activities. To help clarify structure-function relationships for DCD-DUT, we have determined the crystal structure of the wild-type DCD-DUT protein in its apo form to 1.42A and structures of DCD-DUT in complex with dCTP and dUTP to resolutions of 1.77A and 2.10A, respectively. To gain insights into substrate interactions, we complemented analyses of the experimentally defined weak density for nucleotides with automated docking experiments using dCTP, dUTP, and dTTP. DCD-DUT is a hexamer, unlike the homologous dUTPases, and its subunits contain several insertions and substitutions different from the dUTPase beta barrel core that likely contribute to dCTP specificity and deamination. These first structures of a dCTP deaminase reveal a probable role for an unstructured C-terminal region different from that of the dUTPases and possible mechanisms for both bifunctional enzyme activity and feedback inhibition by dTTP.
潜在诱变的含尿嘧啶核苷酸中间体是由dCTP脱氨产生的,脱氨过程可以是自发的,也可以是酶促的,这是dCTP转化为dTTP的第一步。dUTP酶将dUTP转化为dUMP,从而避免dUTP错误掺入DNA,并为dTTP合成途径中的下一种酶胸苷酸合成酶创造底物。虽然dCTP脱氨酶和dUTP酶活性通常存在于不同但同源的酶中,但嗜热栖热甲烷球菌有一种酶DCD-DUT,它同时具有dCTP脱氨酶和dUTP焦磷酸酶活性。DCD-DUT对dCTP的活性最高,其次是dUTP,dTTP会抑制脱氨酶和焦磷酸酶的活性。为了帮助阐明DCD-DUT的结构-功能关系,我们确定了野生型DCD-DUT蛋白无配体形式的晶体结构,分辨率为1.42Å,以及与dCTP和dUTP复合物形式的DCD-DUT晶体结构,分辨率分别为1.77Å和2.10Å。为了深入了解底物相互作用,我们用dCTP、dUTP和dTTP进行自动对接实验,对实验确定的核苷酸弱密度分析进行补充。与同源dUTP酶不同,DCD-DUT是六聚体,其亚基包含几个与dUTP酶β桶核心不同的插入和取代,这可能有助于dCTP特异性和脱氨作用。这些dCTP脱氨酶的首个结构揭示了与dUTP酶不同的无结构C末端区域可能发挥的作用,以及双功能酶活性和dTTP反馈抑制的可能机制。