Suppr超能文献

动态皮层微管之间的相遇通过微管行为的角度依赖性修饰促进皮层微管阵列的有序排列。

Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior.

作者信息

Dixit Ram, Cyr Richard

机构信息

Pen State University, University Park, Pensylvania 16802, USA.

出版信息

Plant Cell. 2004 Dec;16(12):3274-84. doi: 10.1105/tpc.104.026930. Epub 2004 Nov 11.

Abstract

Ordered cortical microtubule arrays are essential for normal plant morphogenesis, but how these arrays form is unclear. The dynamics of individual cortical microtubules are stochastic and cannot fully account for the observed order; however, using tobacco (Nicotiana tabacum) cells expressing either the MBD-DsRed (microtubule binding domain of the mammalian MAP4 fused to the Discosoma sp red fluorescent protein) or YFP-TUA6 (yellow fluorescent protein fused to the Arabidopsis alpha-tubulin 6 isoform) microtubule markers, we identified intermicrotubule interactions that modify their stochastic behaviors. The intermicrotubule interactions occur when the growing plus-ends of cortical microtubules encounter previously existing cortical microtubules. Importantly, the outcome of such encounters depends on the angle at which they occur: steep-angle collisions are characterized by approximately sevenfold shorter microtubule contact times compared with shallow-angle encounters, and steep-angle collisions are twice as likely to result in microtubule depolymerization. Hence, steep-angle collisions promote microtubule destabilization, whereas shallow-angle encounters promote both microtubule stabilization and coalignment. Monte Carlo modeling of the behavior of simulated microtubules, according to the observed behavior of transverse and longitudinally oriented cortical microtubules in cells, reveals that these simple rules for intermicrotubule interactions are necessary and sufficient to facilitate the self-organization of dynamic microtubules into a parallel configuration.

摘要

有序的皮层微管阵列对于正常的植物形态发生至关重要,但这些阵列如何形成尚不清楚。单个皮层微管的动力学是随机的,无法完全解释所观察到的有序性;然而,使用表达MBD-DsRed(与盘状水母红色荧光蛋白融合的哺乳动物MAP4的微管结合结构域)或YFP-TUA6(与拟南芥α-微管蛋白6亚型融合的黄色荧光蛋白)微管标记的烟草(Nicotiana tabacum)细胞,我们确定了改变其随机行为的微管间相互作用。当皮层微管生长的正端遇到先前存在的皮层微管时,就会发生微管间相互作用。重要的是,这种相遇的结果取决于它们发生的角度:与浅角度相遇相比,陡角度碰撞的微管接触时间缩短约七倍,并且陡角度碰撞导致微管解聚的可能性是浅角度相遇的两倍。因此,陡角度碰撞促进微管不稳定,而浅角度相遇促进微管稳定和共排列。根据细胞中横向和纵向定向皮层微管的观察行为,对模拟微管行为进行的蒙特卡罗建模表明,这些微管间相互作用的简单规则对于促进动态微管自组织成平行构型是必要且充分的。

相似文献

2
GCP-WD mediates γ-TuRC recruitment and the geometry of microtubule nucleation in interphase arrays of Arabidopsis.
Curr Biol. 2014 Nov 3;24(21):2548-55. doi: 10.1016/j.cub.2014.09.013. Epub 2014 Oct 16.
3
Cortical microtubule arrays are initiated from a nonrandom prepattern driven by atypical microtubule initiation.
Plant Physiol. 2013 Mar;161(3):1189-201. doi: 10.1104/pp.112.204057. Epub 2013 Jan 8.
4
Establishment of polarity during organization of the acentrosomal plant cortical microtubule array.
Mol Biol Cell. 2006 Mar;17(3):1298-305. doi: 10.1091/mbc.e05-09-0864. Epub 2005 Dec 28.
5
Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD.
Planta. 2000 Feb;210(3):502-9. doi: 10.1007/s004250050037.
8
Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants.
Nat Cell Biol. 2005 Oct;7(10):961-8. doi: 10.1038/ncb1306. Epub 2005 Sep 4.
9
Understanding phase behavior of plant cell cortex microtubule organization.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11709-14. doi: 10.1073/pnas.1007138107. Epub 2010 Jun 14.
10
Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends.
J Cell Biol. 2006 Sep 11;174(6):839-49. doi: 10.1083/jcb.200512058. Epub 2006 Sep 5.

引用本文的文献

1
Agent-based simulation of cortical microtubule band movement in arabidopsis zygotes.
Sci Rep. 2025 Jul 28;15(1):25787. doi: 10.1038/s41598-025-11078-8.
2
ROS inhibits microtubule dynamics and cell growth heterogeneity during Arabidopsis sepal morphogenesis.
bioRxiv. 2025 May 14:2025.05.09.653143. doi: 10.1101/2025.05.09.653143.
4
Self-organization of mortal filaments and its role in bacterial division ring formation.
Nat Phys. 2024;20(10):1670-1678. doi: 10.1038/s41567-024-02597-8. Epub 2024 Aug 12.
5
Damage-repair events increase the instability of cortical microtubules in Arabidopsis.
Mol Biol Cell. 2024 Jun 1;35(6):ar86. doi: 10.1091/mbc.E23-11-0461. Epub 2024 Apr 24.
6
Microtubule-associated phase separation of MIDD1 tunes cell wall spacing in xylem vessels in Arabidopsis thaliana.
Nat Plants. 2024 Jan;10(1):100-117. doi: 10.1038/s41477-023-01593-9. Epub 2024 Jan 3.
7
Confined-microtubule assembly shapes three-dimensional cell wall structures in xylem vessels.
Nat Commun. 2023 Nov 13;14(1):6987. doi: 10.1038/s41467-023-42487-w.
9
Towards modelling emergence in plant systems.
Quant Plant Biol. 2023 Jul 10;4:e6. doi: 10.1017/qpb.2023.6. eCollection 2023.
10
Probing stress-regulated ordering of the plant cortical microtubule array via a computational approach.
BMC Plant Biol. 2023 Jun 9;23(1):308. doi: 10.1186/s12870-023-04252-5.

本文引用的文献

3
Interactions of tobacco microtubule-associated protein MAP65-1b with microtubules.
Plant J. 2004 Jul;39(1):126-34. doi: 10.1111/j.1365-313X.2004.02115.x.
4
Computational model of dynein-dependent self-organization of microtubule asters.
J Cell Sci. 2004 Mar 15;117(Pt 8):1381-97. doi: 10.1242/jcs.00919. Epub 2004 Mar 2.
6
Microtubules and the shape of plants to come.
Nat Rev Mol Cell Biol. 2004 Jan;5(1):13-22. doi: 10.1038/nrm1277.
7
Higher plant cortical microtubule array analyzed in vitro in the presence of the cell wall.
Cell Motil Cytoskeleton. 2004 Jan;57(1):26-36. doi: 10.1002/cm.10153.
9
Dynamics and regulation of plant interphase microtubules: a comparative view.
Curr Opin Plant Biol. 2003 Dec;6(6):568-76. doi: 10.1016/j.pbi.2003.09.011.
10
EB1 reveals mobile microtubule nucleation sites in Arabidopsis.
Nat Cell Biol. 2003 Nov;5(11):967-71. doi: 10.1038/ncb1057. Epub 2003 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验