Suppr超能文献

通过计算方法探测植物皮质微管阵列的应激调节有序性。

Probing stress-regulated ordering of the plant cortical microtubule array via a computational approach.

机构信息

Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr, West Lafayette, IN, 47907, USA.

Botany and Plant Pathology, Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN, 47907, USA.

出版信息

BMC Plant Biol. 2023 Jun 9;23(1):308. doi: 10.1186/s12870-023-04252-5.

Abstract

BACKGROUND

Morphological properties of tissues and organs rely on cell growth. The growth of plant cells is determined by properties of a tough outer cell wall that deforms anisotropically in response to high turgor pressure. Cortical microtubules bias the mechanical anisotropy of a cell wall by affecting the trajectories of cellulose synthases in the wall that polymerize cellulose microfibrils. The microtubule cytoskeleton is often oriented in one direction at cellular length-scales to regulate growth direction, but the means by which cellular-scale microtubule patterns emerge has not been well understood. Correlations between the microtubule orientation and tensile forces in the cell wall have often been observed. However, the plausibility of stress as a determining factor for microtubule patterning has not been directly evaluated to date.

RESULTS

Here, we simulated how different attributes of tensile forces in the cell wall can orient and pattern the microtubule array in the cortex. We implemented a discrete model with transient microtubule behaviors influenced by local mechanical stress in order to probe the mechanisms of stress-dependent patterning. Specifically, we varied the sensitivity of four types of dynamic behaviors observed on the plus end of microtubules - growth, shrinkage, catastrophe, and rescue - to local stress. Then, we evaluated the extent and rate of microtubule alignments in a two-dimensional computational domain that reflects the structural organization of the cortical array in plant cells.

CONCLUSION

Our modeling approaches reproduced microtubule patterns observed in simple cell types and demonstrated that a spatial variation in the magnitude and anisotropy of stress can mediate mechanical feedback between the wall and of the cortical microtubule array.

摘要

背景

组织和器官的形态特性依赖于细胞生长。植物细胞的生长由坚韧的细胞壁的特性决定,细胞壁在外力作用下会发生各向异性变形,以响应高膨压。皮层微管通过影响细胞壁中纤维素合酶的轨迹来使细胞壁的力学各向异性发生偏差,纤维素合酶使纤维素微纤维聚合。微管细胞骨架通常在细胞长度尺度上沿一个方向取向,以调节生长方向,但细胞尺度微管模式出现的方式尚未得到很好的理解。细胞骨架通常在细胞长度尺度上沿一个方向取向,以调节生长方向,但细胞尺度微管模式出现的方式尚未得到很好的理解。微管取向与细胞壁中拉伸力之间的相关性经常被观察到。然而,到目前为止,还没有直接评估应力作为微管模式形成决定因素的合理性。

结果

在这里,我们模拟了细胞壁中不同的拉伸力属性如何定向和模式化皮层中的微管阵列。我们实现了一个具有瞬态微管行为的离散模型,该模型受局部机械应力的影响,以探测与应力相关的模式形成机制。具体来说,我们改变了微管加端上观察到的四种动态行为的敏感性 - 生长、收缩、崩解和救援 - 以适应局部应力。然后,我们在二维计算域中评估了微管对齐的程度和速率,该计算域反映了植物细胞中皮层阵列的结构组织。

结论

我们的建模方法再现了在简单细胞类型中观察到的微管模式,并表明应力的大小和各向异性的空间变化可以介导细胞壁和皮质微管阵列之间的机械反馈。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e72/10251582/737c648218de/12870_2023_4252_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验