National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11709-14. doi: 10.1073/pnas.1007138107. Epub 2010 Jun 14.
Plant microtubules are found to be strongly associated with the cell cortex and to experience polymerization/depolymerization processes that are responsible for the organization of microtubule cortical array. Here we propose a minimal model that incorporates the basic assembly dynamics and intermicrotubule interaction to understand the unexplored phase behavior of such a system. Through kinetic Monte Carlo simulations and theoretical calculations, we show that the self-organized patterns of plant cell cortical microtubules can be regulated by controlling single microtubule assembly dynamics. Biologically, this means that the structural reorganization can be regulated by microtubule-associated proteins via changing microtubule dynamic instability parameters, such as the microtubule plus-end growing rate, GTP-tubulin hydrolysis rate, etc. Such regulation is indirectly confirmed by various in vivo experiments. For the physical aspects, we not only construct the phase diagram that determines under what parameters ordered microtubule arrays form, but also predict that the essentially different ordered structures may appear through continuous and discontinuous transitions. The present study will play a central role in our understanding of the basic mechanism of plant cell noncentrosomal microtubule arrays.
植物微管被发现与细胞皮层强烈相关,并经历聚合/解聚过程,这些过程负责微管皮层阵列的组织。在这里,我们提出了一个最小模型,该模型结合了基本的组装动力学和微管间相互作用,以了解此类系统中未被探索的相行为。通过动力学蒙特卡罗模拟和理论计算,我们表明可以通过控制单个微管组装动力学来调节植物细胞皮层微管的自组织模式。从生物学角度来看,这意味着可以通过改变微管动态不稳定性参数(例如微管正端生长速率、GTP-微管蛋白水解速率等),通过微管相关蛋白来调节结构重组。这种调节在各种体内实验中得到了间接证实。就物理方面而言,我们不仅构建了确定在什么参数下形成有序微管阵列的相图,而且还预测了通过连续和不连续转变可能出现的本质上不同的有序结构。本研究将在我们理解植物细胞非中心体微管阵列的基本机制方面发挥核心作用。