Suppr超能文献

理解植物细胞质膜微管组织的相行为。

Understanding phase behavior of plant cell cortex microtubule organization.

机构信息

National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.

出版信息

Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11709-14. doi: 10.1073/pnas.1007138107. Epub 2010 Jun 14.

Abstract

Plant microtubules are found to be strongly associated with the cell cortex and to experience polymerization/depolymerization processes that are responsible for the organization of microtubule cortical array. Here we propose a minimal model that incorporates the basic assembly dynamics and intermicrotubule interaction to understand the unexplored phase behavior of such a system. Through kinetic Monte Carlo simulations and theoretical calculations, we show that the self-organized patterns of plant cell cortical microtubules can be regulated by controlling single microtubule assembly dynamics. Biologically, this means that the structural reorganization can be regulated by microtubule-associated proteins via changing microtubule dynamic instability parameters, such as the microtubule plus-end growing rate, GTP-tubulin hydrolysis rate, etc. Such regulation is indirectly confirmed by various in vivo experiments. For the physical aspects, we not only construct the phase diagram that determines under what parameters ordered microtubule arrays form, but also predict that the essentially different ordered structures may appear through continuous and discontinuous transitions. The present study will play a central role in our understanding of the basic mechanism of plant cell noncentrosomal microtubule arrays.

摘要

植物微管被发现与细胞皮层强烈相关,并经历聚合/解聚过程,这些过程负责微管皮层阵列的组织。在这里,我们提出了一个最小模型,该模型结合了基本的组装动力学和微管间相互作用,以了解此类系统中未被探索的相行为。通过动力学蒙特卡罗模拟和理论计算,我们表明可以通过控制单个微管组装动力学来调节植物细胞皮层微管的自组织模式。从生物学角度来看,这意味着可以通过改变微管动态不稳定性参数(例如微管正端生长速率、GTP-微管蛋白水解速率等),通过微管相关蛋白来调节结构重组。这种调节在各种体内实验中得到了间接证实。就物理方面而言,我们不仅构建了确定在什么参数下形成有序微管阵列的相图,而且还预测了通过连续和不连续转变可能出现的本质上不同的有序结构。本研究将在我们理解植物细胞非中心体微管阵列的基本机制方面发挥核心作用。

相似文献

1
Understanding phase behavior of plant cell cortex microtubule organization.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11709-14. doi: 10.1073/pnas.1007138107. Epub 2010 Jun 14.
2
Microtubule dynamic instability: a new model with coupled GTP hydrolysis and multistep catastrophe.
Bioessays. 2013 May;35(5):452-61. doi: 10.1002/bies.201200131. Epub 2013 Mar 27.
3
Theoretical analysis of microtubule dynamics at all times.
J Phys Chem B. 2014 Dec 4;118(48):13777-84. doi: 10.1021/jp507206f. Epub 2014 Nov 21.
5
Microtubule polymerization dynamics.
Annu Rev Cell Dev Biol. 1997;13:83-117. doi: 10.1146/annurev.cellbio.13.1.83.
6
A thermodynamic model of microtubule assembly and disassembly.
PLoS One. 2009 Aug 11;4(8):e6378. doi: 10.1371/journal.pone.0006378.
7
Signatures of a macroscopic switching transition for a dynamic microtubule.
Sci Rep. 2017 Apr 4;7:45747. doi: 10.1038/srep45747.
9
Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues.
Science. 2008 Nov 28;322(5906):1353-6. doi: 10.1126/science.1165401. Epub 2008 Oct 16.
10
Theoretical analysis of microtubules dynamics using a physical-chemical description of hydrolysis.
J Phys Chem B. 2013 Aug 8;117(31):9217-23. doi: 10.1021/jp404794f. Epub 2013 Jul 30.

引用本文的文献

1
Agent-based simulation of cortical microtubule band movement in arabidopsis zygotes.
Sci Rep. 2025 Jul 28;15(1):25787. doi: 10.1038/s41598-025-11078-8.
3
4
Microtubule encounter-based catastrophe in Arabidopsis cortical microtubule arrays.
BMC Plant Biol. 2016 Jan 16;16:18. doi: 10.1186/s12870-016-0703-x.
5
Stochastic models for plant microtubule self-organization and structure.
J Math Biol. 2015 Dec;71(6-7):1353-85. doi: 10.1007/s00285-015-0860-9. Epub 2015 Feb 21.

本文引用的文献

1
Collision induced spatial organization of microtubules.
Biophys Chem. 2007 Jul;128(2-3):231-44. doi: 10.1016/j.bpc.2007.04.009. Epub 2007 May 4.
2
Analysis of a mesoscopic stochastic model of microtubule dynamic instability.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Oct;74(4 Pt 1):041920. doi: 10.1103/PhysRevE.74.041920. Epub 2006 Oct 27.
5
Microtubule cortical array organization and plant cell morphogenesis.
Curr Opin Plant Biol. 2006 Dec;9(6):571-8. doi: 10.1016/j.pbi.2006.09.005. Epub 2006 Sep 28.
6
Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner.
Nat Cell Biol. 2006 Sep;8(9):957-62. doi: 10.1038/ncb1462. Epub 2006 Aug 13.
7
Katanin's severing activity favors bundling of cortical microtubules in plants.
Plant J. 2006 Jun;46(6):1009-17. doi: 10.1111/j.1365-313X.2006.02761.x.
8
Microtubule dynamics and organization in the plant cortical array.
Annu Rev Plant Biol. 2006;57:859-75. doi: 10.1146/annurev.arplant.57.032905.105329.
9
Establishment of polarity during organization of the acentrosomal plant cortical microtubule array.
Mol Biol Cell. 2006 Mar;17(3):1298-305. doi: 10.1091/mbc.e05-09-0864. Epub 2005 Dec 28.
10
Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants.
Nat Cell Biol. 2005 Oct;7(10):961-8. doi: 10.1038/ncb1306. Epub 2005 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验