Padden Metzker Julia K, McGrady John E
Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK.
Chemistry. 2004 Dec 3;10(24):6447-55. doi: 10.1002/chem.200400580.
Density functional theory has been used to assess the role of the bimetallic core in supporting reductive cleavage of the N=N double bond in [Cp2Mo2(mu-SMe)3(mu-eta1:eta1-HN=NPh)]+. The HOMO of the complex, the Mo-Mo delta orbital, plays a key role as a source of high-energy electrons, available for transfer into the vacant orbitals of the N=N unit. As a result, the metal centres cycle between the Mo(III) and Mo(IV) oxidation states. The symmetry of the Mo-Mo delta "buffer" orbital has a profound influence on the reaction pathway, because significant overlap with the redox-active orbital on the N=N unit (pi* or sigma*) is required for efficient electron transfer. The orthogonality of the Mo-Mo delta and N-N sigma* orbitals in the eta1:eta1 coordination mode ensures that electron transfer into the N-N sigma bond is effectively blocked, and a rate-limiting eta1:eta1-->eta1 rearrangement is a necessary precursor to cleavage of the bond.
密度泛函理论已被用于评估双金属核心在支持[Cp2Mo2(μ-SMe)3(μ-η1:η1-HN=NPh)]+中N=N双键的还原裂解过程中所起的作用。该配合物的最高占据分子轨道(HOMO),即Mo-Moδ轨道,作为高能电子的来源起着关键作用,这些电子可转移到N=N单元的空轨道中。结果,金属中心在Mo(III)和Mo(IV)氧化态之间循环。Mo-Moδ“缓冲”轨道的对称性对反应途径有深远影响,因为与N=N单元上的氧化还原活性轨道(π或σ)有显著重叠是有效电子转移所必需的。在η1:η1配位模式下,Mo-Moδ和N-Nσ*轨道的正交性确保了电子向N-Nσ键的转移被有效阻断,并且限速的η1:η1→η1重排是该键裂解的必要前提。