Australian National University, Research School of Chemistry, Canberra, ACT, 0200, Australia.
Dalton Trans. 2010 May 21;39(19):4529-40. doi: 10.1039/b924999k.
The activation and cleavage of the N-N bond in side-on bound [L₂M-NN-ML₂] (L = NH₂, NMe₂, N(i)Pr₂, C₅H₅, C₅Me₄H) dinitrogen complexes of transition metals in groups 4 through 9 have been investigated using density functional theory. Emphasis has been placed on Ti, Zr, and Hf (group 4) complexes due to their experimental relevance. Calculations on these species have shown that for cases when the structural configuration corresponds to the terminal [ML₂] fragments adopting a perpendicular orientation with respect to the central [N-N] unit, a considerably higher degree of N-N activation is predicted relative to that observed in the experimentally characterized cyclopentadienyl analogues and in related systems involving end-on dinitrogen coordination. An examination of the orbital interactions between the metal-based fragments and the dinitrogen unit shows that both σ and π bonding are important in the side-on binding mode, in contrast to the end-on mode where metal-nitrogen π interactions are dominant. This analysis also reveals that the model amide systems possess the orbital properties identified as necessary for successful N-N hydrogenation. A significant result obtained for the amide complexes containing metals from groups 5 (V, Nb, Ta), 6 (Cr, Mo, W), and 7 (Mn, Tc, Re), is the presence of metal-metal bonding in configurations that are considerably distorted from planarity. As a consequence, these complexes exhibit strongly enhanced stability relative to species where metal-metal bonding is absent. In contrast, the d² metal-based configurations in the group 4 complexes of Ti, Zr, and Hf are unable to provide the six electrons required for complete reductive cleavage of the dinitrogen unit which is necessary to allow the metal centres to approach one another sufficiently for metal-metal bond formation.
使用密度泛函理论研究了过渡金属 4 到 9 族中侧位键合[L₂M-NN-ML₂](L = NH₂,NMe₂,N(i)Pr₂,C₅H₅,C₅Me₄H)二氮络合物中 N-N 键的活化和断裂。由于其实验相关性,重点研究了 Ti、Zr 和 Hf(第 4 族)络合物。这些物种的计算表明,对于结构构型对应于末端[ML₂]片段相对于中心[N-N]单元采用垂直取向的情况,相对于实验表征的环戊二烯基类似物和涉及端接二氮配位的相关体系中观察到的情况,预测会发生更高程度的 N-N 活化。对金属基片段和二氮单元之间的轨道相互作用的研究表明,在侧位键合模式下,σ 和π键合都很重要,与端位模式下金属-氮π相互作用占主导地位形成对比。这种分析还表明,酰胺模型体系具有被识别为成功进行 N-N 氢化所必需的轨道性质。对于包含来自第 5(V、Nb、Ta)、6(Cr、Mo、W)和 7(Mn、Tc、Re)族金属的酰胺络合物获得的一个重要结果是,在平面明显变形的构型中存在金属-金属键合。因此,这些络合物表现出与不存在金属-金属键合的物种相比显著增强的稳定性。相比之下,Ti、Zr 和 Hf 的第 4 族配合物中的 d²金属基构型无法提供完全还原断裂二氮单元所需的六个电子,这对于允许金属中心彼此足够接近形成金属-金属键是必要的。