Doonan Christian J, Rubie Nick D, Peariso Katrina, Harris Hugh H, Knottenbelt Sushilla Z, George Graham N, Young Charles G, Kirk Martin L
The Department of Chemistry and Biological Chemistry, The University of New Mexico, MSC03 20601 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA.
J Am Chem Soc. 2008 Jan 9;130(1):55-65. doi: 10.1021/ja068512m. Epub 2007 Dec 7.
The molybdenum hydroxylases catalyze the oxidation of numerous aromatic heterocycles and simple organics and, unlike other hydroxylases, utilize water as the source of oxygen incorporated into the product. The electronic structures of the cis-MoOS units in CoCp2[TpiPrMoVOS(OPh)] and TpiPrMoVIOS(OPh) (TpiPr = hydrotris(3-isopropylpyrazol-1-yl)borate), new models for molybdenum hydroxylases, have been studied in detail using S K-edge X-ray absorption spectroscopy, vibrational spectroscopy, and detailed bonding calculations. The results show a highly delocalized Mo=S pi* LUMO redox orbital that is formally Mo(dxy) with approximately 35% sulfido ligand character. Vibrational spectroscopy has been used to quantitate Mo-Ssulfido bond order changes in the cis-MoOS units as a function of redox state. Results support a redox active molecular orbital that has a profound influence on MoOS bonding through changes to the relative electro/nucleophilicity of the terminal sulfido ligand accompanying oxidation state changes. The bonding description for these model cis-MoOS systems supports enzyme mechanisms that are under orbital control and dominantly influenced by the unique electronic structure of the cis-MoOS site. The electronic structure of the oxidized enzyme site is postulated to play a role in polarizing a substrate carbon center for nucleophilic attack by metal activated water and acting as an electron sink in the two-electron oxidation of substrates.
钼羟化酶催化多种芳香杂环化合物和简单有机物的氧化反应,与其他羟化酶不同的是,它利用水作为产物中氧的来源。钴茂二聚体[三异丙基钼钒氧硫代苯氧基(TpiPrMoVOS(OPh))]和三异丙基钼六价氧硫代苯氧基(TpiPrMoVIOS(OPh))(TpiPr = 氢三(3 - 异丙基吡唑 - 1 - 基)硼酸酯)中顺式 - MoOS单元的电子结构,作为钼羟化酶的新模型,已通过硫K边X射线吸收光谱、振动光谱和详细的键合计算进行了详细研究。结果表明,存在一个高度离域的Mo = S π* 最低未占分子轨道,其形式上为Mo(dxy),具有约35%的硫代配体特征。振动光谱已被用于定量顺式 - MoOS单元中Mo - S硫代键级随氧化态的变化。结果支持了一个氧化还原活性分子轨道,它通过伴随氧化态变化的末端硫代配体相对亲电/亲核性的改变,对MoOS键合有深远影响。这些模型顺式 - MoOS系统的键合描述支持了在轨道控制下且主要受顺式 - MoOS位点独特电子结构影响的酶机制。推测氧化态酶位点的电子结构在使底物碳中心极化以便被金属活化水进行亲核攻击以及在底物的双电子氧化过程中作为电子受体方面发挥作用。