Suppr超能文献

两种二元筛查试验相对真阳性率和假阳性率的验证性偏倚校正估计量。

Verification bias-corrected estimators of the relative true and false positive rates of two binary screening tests.

作者信息

Alonzo Todd A

机构信息

University of Southern California Keck School of Medicine, 440 E. Huntington Dr, Suite 300, P.O. Box 60012, Arcadia, CA 91066, USA.

出版信息

Stat Med. 2005 Feb 15;24(3):403-17. doi: 10.1002/sim.1959.

Abstract

The relative accuracy of two binary screening tests can be quantified by estimating the relative true positive rate (rTPR) and relative false positive rate (rFPR) between the two tests. Ideally all study subjects are administered both screening tests as well as a gold standard to determine disease status. In practice, however, often the gold standard is so invasive or costly that only a percentage of study subjects receive disease verification and the percentage differs depending on the results of the two screening tests. This is known as verification-biased sampling and may be by design or due to differential patient dropout or refusal to have the gold standard test administered. In this paper, maximum likelihood estimators of rTPR and rFPR and corresponding confidence intervals are developed for studies with verification-biased sampling assuming that disease status is missing at random (MAR). Simulation studies are used to show that if the MAR assumption holds, then the verification bias-corrected point estimators have little small sample bias and the confidence intervals have good coverage probabilities. Simulation studies also demonstrate that the verification bias-corrected point estimators may not be robust to violation of the MAR assumption. The proposed methods are illustrated using data from a study comparing the accuracy of Papanicolaou and human papillomavirus tests for detecting cervical cancer.

摘要

两种二元筛查试验的相对准确性可通过估计两者之间的相对真阳性率(rTPR)和相对假阳性率(rFPR)来量化。理想情况下,所有研究对象都要接受这两种筛查试验以及一种金标准检查,以确定疾病状态。然而,在实际操作中,金标准检查往往具有侵入性或成本高昂,以至于只有一定比例的研究对象接受疾病验证,而且这个比例会因两种筛查试验的结果而有所不同。这被称为验证偏倚抽样,可能是有意设计的,也可能是由于患者退出或拒绝接受金标准检查的差异所致。在本文中,针对存在验证偏倚抽样的研究,在假定疾病状态随机缺失(MAR)的情况下,开发了rTPR和rFPR的最大似然估计量以及相应的置信区间。模拟研究表明,如果MAR假设成立,那么经过验证偏倚校正的点估计量几乎没有小样本偏差,并且置信区间具有良好的覆盖概率。模拟研究还表明,经过验证偏倚校正的点估计量对于MAR假设的违背可能并不稳健。本文使用一项比较巴氏涂片检查和人乳头瘤病毒检测对宫颈癌检测准确性的研究数据,对所提出的方法进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验