Zhou Xiao-Hua, Castelluccio Pete, Zhou Chuan
HSR&D VA Puget Sound Health Care System, Seattle, Washington 98101, USA.
Biometrics. 2005 Jun;61(2):600-9. doi: 10.1111/j.1541-0420.2005.00324.x.
In the evaluation of diagnostic accuracy of tests, a gold standard on the disease status is required. However, in many complex diseases, it is impossible or unethical to obtain such a gold standard. If an imperfect standard is used, the estimated accuracy of the tests would be biased. This type of bias is called imperfect gold standard bias. In this article we develop a nonparametric maximum likelihood method for estimating ROC curves and their areas of ordinal-scale tests in the absence of a gold standard. Our simulation study shows that the proposed estimators for the ROC curve areas have good finite-sample properties in terms of bias and mean squared error. Further simulation studies show that our nonparametric approach is comparable to the binormal parametric method, and is easier to implement. Finally, we illustrate the application of the proposed method in a real clinical study on assessing the accuracy of seven specific pathologists in detecting carcinoma in situ of the uterine cervix.
在评估检测的诊断准确性时,需要关于疾病状态的金标准。然而,在许多复杂疾病中,获取这样的金标准是不可能的或不符合伦理的。如果使用了不完善的标准,检测的估计准确性将会有偏差。这种偏差类型被称为不完善金标准偏差。在本文中,我们开发了一种非参数最大似然方法,用于在没有金标准的情况下估计有序尺度检测的ROC曲线及其面积。我们的模拟研究表明,所提出的ROC曲线面积估计器在偏差和均方误差方面具有良好的有限样本性质。进一步的模拟研究表明,我们的非参数方法与双正态参数方法相当,并且更易于实施。最后,我们说明了所提出方法在一项真实临床研究中的应用,该研究旨在评估七位特定病理学家检测子宫颈原位癌的准确性。