Suppr超能文献

计算机辅助检测结肠CT成像中减少直肠管假阳性的研究

Reduction of false positives on the rectal tube in computer-aided detection for CT colonography.

作者信息

Lordanescu Gheorghe, Summers Ronald M

机构信息

Department of Radiology, National Institutes of Health Building 10, Bethesda, Maryland 20892-1182, USA.

出版信息

Med Phys. 2004 Oct;31(10):2855-62. doi: 10.1118/1.1790131.

Abstract

PURPOSE

To eliminate false-positive (FP) polyp detections on the rectal tube (RT) in CT colonography (CTC) computer-aided detection (CAD).

METHODS

We use a three-stage approach to detect the RT: detect the RT shaft, track the tube to the tip and label all the voxels that belong to the RT. We applied our RT detection algorithm on a CTC dataset consisting of 80 datasets (40 patients scanned in both prone and supine positions). Two different types of RTs were present, characterized by differences in shaft/bulb diameters, wall intensities, and shape of tip.

RESULTS

The algorithm detected 90% of RT shafts and completely tracked 72% of them. We labeled all the voxels belonging to the completely tracked RTs (72%) and in 11 out of 80 (14%) cases the RT voxels were partially labeled. We obtained a 9.2% reduction of the FPs in the initial polyp candidates' population, and a 7.9% reduction of the FPs generated by our CAD system. None of the true-positive detections were mislabeled.

CONCLUSIONS

The algorithm detects the RTs with good accuracy, is robust with respect to the two different types of RT used in our study, and is effective at reducing the number of RT FPs reported by our CAD system.

摘要

目的

在CT结肠成像(CTC)计算机辅助检测(CAD)中消除直肠管(RT)上的假阳性(FP)息肉检测。

方法

我们采用三阶段方法来检测RT:检测RT轴,追踪管道至末端并标记属于RT的所有体素。我们将RT检测算法应用于一个由80个数据集组成的CTC数据集(40名患者分别在俯卧位和仰卧位进行扫描)。存在两种不同类型的RT,其特征在于轴/球茎直径、壁强度和末端形状的差异。

结果

该算法检测到90%的RT轴,并完全追踪了其中的72%。我们标记了属于完全追踪的RT的所有体素(72%),在80例中的11例(14%)中,RT体素被部分标记。我们在初始息肉候选群体中使FP减少了9.2%,在我们的CAD系统生成的FP中减少了7.9%。没有真阳性检测被错误标记。

结论

该算法能以良好的准确性检测RT,对于我们研究中使用的两种不同类型的RT具有鲁棒性,并且能有效减少我们的CAD系统报告的RT FP数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验