Suppr超能文献

医学成像中基于像素的机器学习。

Pixel-based machine learning in medical imaging.

作者信息

Suzuki Kenji

机构信息

Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, MC 2026, Chicago, IL 60637, USA.

出版信息

Int J Biomed Imaging. 2012;2012:792079. doi: 10.1155/2012/792079. Epub 2012 Feb 28.

Abstract

Machine learning (ML) plays an important role in the medical imaging field, including medical image analysis and computer-aided diagnosis, because objects such as lesions and organs may not be represented accurately by a simple equation; thus, medical pattern recognition essentially require "learning from examples." One of the most popular uses of ML is classification of objects such as lesions into certain classes (e.g., abnormal or normal, or lesions or nonlesions) based on input features (e.g., contrast and circularity) obtained from segmented object candidates. Recently, pixel/voxel-based ML (PML) emerged in medical image processing/analysis, which use pixel/voxel values in images directly instead of features calculated from segmented objects as input information; thus, feature calculation or segmentation is not required. Because the PML can avoid errors caused by inaccurate feature calculation and segmentation which often occur for subtle or complex objects, the performance of the PML can potentially be higher for such objects than that of common classifiers (i.e., feature-based MLs). In this paper, PMLs are surveyed to make clear (a) classes of PMLs, (b) similarities and differences within (among) different PMLs and those between PMLs and feature-based MLs, (c) advantages and limitations of PMLs, and (d) their applications in medical imaging.

摘要

机器学习(ML)在医学成像领域发挥着重要作用,包括医学图像分析和计算机辅助诊断,因为诸如病变和器官等对象可能无法通过简单方程准确表示;因此,医学模式识别本质上需要“从示例中学习”。ML最常见的用途之一是基于从分割后的候选对象中获取的输入特征(例如对比度和圆形度),将病变等对象分类到特定类别(例如,异常或正常,病变或非病变)。最近,基于像素/体素的机器学习(PML)在医学图像处理/分析中出现,它直接使用图像中的像素/体素值,而不是将从分割对象计算出的特征作为输入信息;因此,不需要进行特征计算或分割。由于PML可以避免因特征计算和分割不准确而导致的错误,而这种错误在处理细微或复杂对象时经常发生,因此对于此类对象,PML的性能可能高于普通分类器(即基于特征的机器学习方法)。本文对PML进行综述,以明确(a)PML的类别,(b)不同PML之间以及PML与基于特征的ML之间的异同,(c)PML的优缺点,以及(d)它们在医学成像中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d13/3299341/529856313ae2/IJBI2012-792079.001.jpg

相似文献

1
Pixel-based machine learning in medical imaging.
Int J Biomed Imaging. 2012;2012:792079. doi: 10.1155/2012/792079. Epub 2012 Feb 28.
2
Machine Learning in Computer-aided Diagnosis of the Thorax and Colon in CT: A Survey.
IEICE Trans Inf Syst. 2013 Apr 1;E96-D(4):772-783. doi: 10.1587/transinf.e96.d.772.
3
Overview of deep learning in medical imaging.
Radiol Phys Technol. 2017 Sep;10(3):257-273. doi: 10.1007/s12194-017-0406-5. Epub 2017 Jul 8.
4
A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
Comput Methods Programs Biomed. 2018 Oct;164:15-22. doi: 10.1016/j.cmpb.2018.05.034. Epub 2018 Jun 26.
5
Pixel classification based color image segmentation using quaternion exponent moments.
Neural Netw. 2016 Feb;74:1-13. doi: 10.1016/j.neunet.2015.10.012. Epub 2015 Nov 6.
6
Object recognition in medical images via anatomy-guided deep learning.
Med Image Anal. 2022 Oct;81:102527. doi: 10.1016/j.media.2022.102527. Epub 2022 Jun 25.
7
Methods in quantitative image analysis.
Histochem Cell Biol. 1996 May;105(5):333-55. doi: 10.1007/BF01463655.
9
Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification.
Comput Methods Programs Biomed. 2019 Sep;178:201-218. doi: 10.1016/j.cmpb.2019.06.018. Epub 2019 Jun 16.
10
LFANet: Lightweight feature attention network for abnormal cell segmentation in cervical cytology images.
Comput Biol Med. 2022 Jun;145:105500. doi: 10.1016/j.compbiomed.2022.105500. Epub 2022 Apr 6.

引用本文的文献

1
State of the art: radiomics and radiomics-related artificial intelligence on the road to clinical translation.
BJR Open. 2023 Dec 12;6(1):tzad004. doi: 10.1093/bjro/tzad004. eCollection 2024 Jan.
3
Automated Segmentation of Abnormal Tissues in Medical Images.
J Biomed Phys Eng. 2021 Aug 1;11(4):415-424. doi: 10.31661/jbpe.v0i0.958. eCollection 2021 Aug.
4
The Role of Radiomics in Lung Cancer: From Screening to Treatment and Follow-Up.
Front Oncol. 2021 May 5;11:603595. doi: 10.3389/fonc.2021.603595. eCollection 2021.
5
Artificial Intelligence for Response Evaluation With PET/CT.
Semin Nucl Med. 2021 Mar;51(2):157-169. doi: 10.1053/j.semnuclmed.2020.10.003. Epub 2020 Nov 11.
6
The detection of lung cancer using massive artificial neural network based on soft tissue technique.
BMC Med Inform Decis Mak. 2020 Oct 31;20(1):282. doi: 10.1186/s12911-020-01220-z.
7
Findings from machine learning in clinical medical imaging applications - Lessons for translation to the forensic setting.
Forensic Sci Int. 2020 Nov;316:110538. doi: 10.1016/j.forsciint.2020.110538. Epub 2020 Oct 18.
8
Voxel-based supervised machine learning of peripheral zone prostate cancer using noncontrast multiparametric MRI.
J Appl Clin Med Phys. 2020 Oct;21(10):179-191. doi: 10.1002/acm2.12992. Epub 2020 Aug 8.
9
Deep Learning in CT Images: Automated Pulmonary Nodule Detection for Subsequent Management Using Convolutional Neural Network.
Cancer Manag Res. 2020 Apr 29;12:2979-2992. doi: 10.2147/CMAR.S239927. eCollection 2020.
10
Machine and deep learning methods for radiomics.
Med Phys. 2020 Jun;47(5):e185-e202. doi: 10.1002/mp.13678.

本文引用的文献

1
A computational approach to edge detection.
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.
8
Comparison of 2D and 3D views for evaluation of flat lesions in CT colonography.
Acad Radiol. 2010 Jan;17(1):39-47. doi: 10.1016/j.acra.2009.07.004. Epub 2009 Sep 5.
9
A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD).
Phys Med Biol. 2009 Sep 21;54(18):S31-45. doi: 10.1088/0031-9155/54/18/S03. Epub 2009 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验