Miquel Geneviève, Nekaa Tarek, Kahn Philippe H, Hémadi Miryana, El Hage Chahine Jean-Michel
Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris 7-CNRS UMR 7086, 1 rue Guy de la Brosse, 75005 Paris, France.
Biochemistry. 2004 Nov 23;43(46):14722-31. doi: 10.1021/bi048484p.
The kinetics and thermodynamics of Bi(III) exchange between bismuth mononitrilotriacetate (BiL) and human serum transferrin as well as those of the interaction between bismuth-loaded transferrin and transferrin receptor 1 (TFR) were investigated at pH 7.4-8.9. Bismuth is rapidly exchanged between BiL and the C-site of human serum apotransferrin in interaction with bicarbonate to yield an intermediate complex with an effective equilibrium constant K(1) of 6 +/- 4, a direct second-order rate constant k(1) of (2.45 +/- 0.20) x 10(5) M(-1) s(-1), and a reverse second-order rate constant k(-1) of (1.5 +/- 0.5) x 10(6) M(-1) s(-1). The intermediate complex loses a single proton with a proton dissociation constant K(1a) of 2.4 +/- 1 nM to yield a first kinetic product. This product then undergoes a modification in its conformation followed by two proton losses with a first-order rate constant k(2) = 25 +/- 1.5 s(-1) to produce a second kinetic intermediate, which in turn undergoes a last modification in the conformation to yield the bismuth-saturated transferrin in its final state. This last process rate-controls Bi(III) uptake by the N-site of the protein and is independent of the experimental parameters with a constant reciprocal relaxation time tau(3)(-1) of (3 +/- 1) x 10(-2) s(-1). The mechanism of bismuth uptake differs from that of iron and probably does not involve the same transition in conformation from open to closed upon iron uptake. The interaction of bismuth-loaded transferrin with TFR occurs in a single very fast kinetic step with a dissociation constant K(d) of 4 +/- 0.4 microM, a second-order rate constant k(d) of (2.2 +/- 1.5) x 10(8) M(-1) s(-1), and a first-order rate constant k(-d) of 900 +/- 400 s(-1). This mechanism is different from that observed with the ferric holotransferrin and implies that the interaction between TFR and bismuth-loaded transferrin probably takes place on the helical domain of the receptor which is specific for the C-site of transferrin and HFE. The relevance of bismuth incorporation by the transferrin receptor-mediated iron acquisition pathway is discussed.
在pH 7.4 - 8.9条件下,研究了次氮基三乙酸铋(BiL)与人血清转铁蛋白之间Bi(III)交换的动力学和热力学,以及载铋转铁蛋白与转铁蛋白受体1(TFR)之间相互作用的动力学和热力学。铋在BiL与人血清脱铁转铁蛋白的C位点之间迅速交换,并与碳酸氢根相互作用,生成一种中间复合物,其有效平衡常数K(1)为6±4,正向二级速率常数k(1)为(2.45±0.20)×10⁵ M⁻¹ s⁻¹,逆向二级速率常数k(-1)为(1.5±0.5)×10⁶ M⁻¹ s⁻¹。该中间复合物失去一个质子,质子解离常数K(1a)为2.4±1 nM,生成第一个动力学产物。然后该产物的构象发生改变,接着以一级速率常数k(2)=25±1.5 s⁻¹失去两个质子,生成第二个动力学中间体,该中间体又经历最后一次构象改变,生成最终状态的铋饱和转铁蛋白。最后这个过程速率控制着蛋白质N位点对Bi(III)的摄取,并且与实验参数无关,其恒定的倒数弛豫时间tau(3)(-1)为(3±1)×10⁻² s⁻¹。铋摄取的机制与铁不同,可能不涉及铁摄取时从开放构象到闭合构象的相同转变。载铋转铁蛋白与TFR的相互作用在一个非常快速的动力学步骤中发生,解离常数K(d)为4±0.4 μM(微摩尔每升),二级速率常数k(d)为(2.2±1.5)×10⁸ M⁻¹ s⁻¹,一级速率常数k(-d)为900±400 s⁻¹。这种机制与观察到的铁饱和转铁蛋白的机制不同,这意味着TFR与载铋转铁蛋白之间的相互作用可能发生在受体的螺旋结构域上,该结构域对转铁蛋白和HFE的C位点具有特异性。讨论了转铁蛋白受体介导的铁摄取途径中铋掺入的相关性。