Hémadi Miryana, Ha-Duong Nguyêt-Thanh, El Hage Chahine Jean-Michel
ITODYS-Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris 7-CNRS UMR 7086, 1 rue Guy de la Brosse, 75005 Paris, France.
J Mol Biol. 2006 May 12;358(4):1125-36. doi: 10.1016/j.jmb.2006.02.055. Epub 2006 Mar 13.
We report the determination in cell-free assays of the mechanism of iron release from the N-lobe and C-lobe of human serum transferrin in interaction with intact transferrin receptor 1 at 4.3< or =pH< or =6.5. Iron is first released from the N-lobe in the tens of milliseconds range and then from the C-lobe in the hundreds of seconds range. In both cases, iron loss is rate-controlled by slow proton transfers, rate constant for the N-lobe k(1)=1.20(+/-0.05)x10(6)M(-1)s(-1) and for the C-lobe k(2)=1.6(+/-0.1)x10(3)M(-1)s(-1). This iron loss is subsequent to a fast proton-driven decarbonation and is followed by two proton gains, (pK(1a))/2=5.28 per proton for the N-lobe and (pK(2a))/2=5.10 per proton for the C-lobe. Under similar experimental conditions, iron loss is about 17-fold faster from the N-lobe and is at least 200-fold faster from the C-lobe when compared to holotransferrin in the absence of receptor 1. After iron release, the apotransferrin-receptor adduct undergoes a slow partial dissociation controlled by a change in the conformation of the receptor; rate constant k(3)=1.7(+/-0.1)x10(-3)s(-1). At endosomic pH, the final equilibrated state is attained in about 1000 s, after which the free apotransferrin, two prototropic species of the acidic form of the receptor and apotransferrin interacting with the receptor coexist simultaneously. However, since recycling of the vesicle containing the receptor to the cell surface takes a few minutes, the major part of transferrin will still be forwarded to the biological fluid in the form of the apotransferrin-receptor protein-protein adduct.
我们报道了在无细胞分析中,于4.3≤pH≤6.5条件下,人血清转铁蛋白的N叶和C叶与完整转铁蛋白受体1相互作用时铁释放机制的测定结果。铁首先在几十毫秒范围内从N叶释放,然后在几百秒范围内从C叶释放。在这两种情况下,铁的损失均由缓慢的质子转移控制速率,N叶的速率常数k(1)=1.20(±0.05)×10⁶M⁻¹s⁻¹,C叶的速率常数k(2)=1.6(±0.1)×10³M⁻¹s⁻¹。这种铁的损失发生在快速质子驱动的脱碳酸作用之后,接着是两个质子的获得,N叶每个质子的(pK(1a))/2 = 5.28,C叶每个质子的(pK(2a))/2 = 5.10。在相似的实验条件下,与不存在受体1时的全转铁蛋白相比,铁从N叶的释放速度快约17倍,从C叶的释放速度至少快200倍。铁释放后,脱铁转铁蛋白 - 受体加合物经历由受体构象变化控制的缓慢部分解离;速率常数k(3)=1.7(±0.1)×10⁻³s⁻¹。在内体pH值下,约1000秒后达到最终平衡状态,之后游离脱铁转铁蛋白、受体酸性形式的两种质子异构物种以及与受体相互作用的脱铁转铁蛋白同时共存。然而,由于含有受体的囊泡循环回到细胞表面需要几分钟,大部分转铁蛋白仍将以脱铁转铁蛋白 - 受体蛋白质 - 蛋白质加合物的形式被转运到生物体液中。