Suppr超能文献

一种新型光线追踪方法对后角膜和前晶状体半径的恢复情况

The recovery of posterior cornea and anterior lens radii by a novel ray-tracing method.

作者信息

Turuwhenua Jason, Henderson Jon

机构信息

Department of Physics and Electronic Engineering, University of Waikato, Hamilton, New Zealand.

出版信息

Optom Vis Sci. 2004 Nov;81(11):884-94. doi: 10.1097/01.opx.0000145025.65160.78.

Abstract

BACKGROUND

Methods for estimating ocular surface radii are typically based on paraxial vergence calculations, need to account for finite source positions, and require refocusing of the camera. This article describes (1) a telecentric ray-finding method; and (2) its application to the problem of determining posterior cornea (R2) and anterior lens (R3) radii by a regression procedure that addresses these issues.

METHODS

The ray-finding algorithm simulates Purkinje image heights Pj(h) (for j = 2, 3; for the Le Grand eye) for the expected range of Rj. A two-step cubic regression procedure fits this image data globally and then over a refined interval to estimate Rj locally. The goodness of fit is measured by the R statistic. A standard method is compared with the new method in simulation. Mean absolute errors and SD's are recorded for 10 randomly chosen R2 and R3. The effect of errors caused by (1) axial shift of the posterior cornea and anterior lens (axially up to +/-0.1 mm); and (2) camera digitization (pixel sizes of 20 microm) are simulated. The method can make use of general surface height information; therefore, it is tested on an eye with nonspherical cornea shape (a toroidal surface).

RESULTS

The time to generate Rj is no more than 45 s (R3), with R > 0.9999. The errors for the unmodified eye are (1.3 +/- 2.1) x 10 mm (R2) and (2.4 +/- 1.6) x 10 mm (R3) (new) vs. (5.6 +/- 0.9) x 10 mm (R2) and (1.1 +/- 1.0) x 10 mm (R3) (standard). Digitization increases errors to 0.32 +/- 0.16 mm (R2) and 0.10 +/- 0.10 (R3) (new) vs. 0.45 +/- 0.33 mm (R2) and 0.48 +/- 0.13 mm (R3) (standard). Axial shift error for R2 is similar between methods, with a tendency toward lower error for the new method given digitization error. This trend is found for R3, although the new method now does consistently better with digitization error. Shift contributes the smaller proportion of total error (approximately 10 mm) compared with digitization (approximately 10 mm). The errors for the toroidal surface are (5.7 +/- 7.6) x 10 mm (R2) and (1.1 +/- 0.7) x 10 mm (R3) (new) compared with errors of 0.18 +/- 0.01 mm (R2) and 0.44 +/- 0.07 mm (R3) (standard). The new method produces better results in this case.

CONCLUSION

A telecentric image-computing algorithm produces accurate image positions. A two-step cubic regression produces accurate estimates of R2 and R3 (errors approximately 10 mm). This error increases with axial shift (approximately 10 mm) and digitization (approximately 10 mm). The new method does better than a standard method ignoring all the errors and tends to handle digitization error better. The new method works well on a toroidal anterior cornea. Testing on model/real eyes is required. Efforts are continuing to refine methods for videophakometry.

摘要

背景

估计眼表半径的方法通常基于近轴聚散计算,需要考虑有限的光源位置,并且需要对相机进行重新聚焦。本文描述了(1)一种远心光线查找方法;以及(2)其通过解决这些问题的回归程序应用于确定后角膜(R2)和前晶状体(R3)半径的问题。

方法

光线查找算法针对Rj的预期范围模拟普尔钦耶图像高度Pj(h)(对于j = 2, 3;对于勒格朗德眼)。两步三次回归程序对该图像数据进行全局拟合,然后在精细区间上进行局部拟合以估计Rj。拟合优度通过R统计量来衡量。在模拟中将一种标准方法与新方法进行比较。记录10个随机选择的R2和R3的平均绝对误差和标准差。模拟了由(1)后角膜和前晶状体的轴向移位(轴向最大±0.1 mm)和(2)相机数字化(像素大小为20微米)引起的误差的影响。该方法可以利用一般的表面高度信息;因此,在具有非球面角膜形状(环形表面)的眼睛上进行了测试。

结果

生成Rj的时间不超过45秒(R3),R > 0.9999。未修改眼睛的误差为(1.3 ± 2.1)×10毫米(R2)和(2.4 ± 1.6)×10毫米(R3)(新方法),而(5.6 ± 0.9)×10毫米(R2)和(1.1 ± 1.0)×10毫米(R3)(标准方法)。数字化使误差增加到0.32 ± 0.16毫米(R2)和0.10 ± 0.10(R3)(新方法),而0.45 ± 0.33毫米(R2)和0.48 ± 0.13毫米(R3)(标准方法)。两种方法之间R2的轴向移位误差相似,在存在数字化误差的情况下,新方法的误差有降低的趋势。对于R3也发现了这种趋势,尽管新方法在处理数字化误差方面现在始终表现更好。与数字化(约10毫米)相比,移位对总误差的贡献比例较小(约10毫米)。环形表面的误差为(5.7 ± 7.6)×10毫米(R2)和(1.1 ± 0.7)×10毫米(R3)(新方法),而误差为0.18 ± 0.01毫米(R2)和0.44 ± 0.07毫米(R3)(标准方法)。在这种情况下,新方法产生了更好的结果。

结论

远心图像计算算法产生准确的图像位置。两步三次回归产生R2和R3的准确估计值(误差约为10毫米)。该误差随着轴向移位(约10毫米)和数字化(约10毫米)而增加。新方法比忽略所有误差的标准方法表现更好,并且在处理数字化误差方面往往更好。新方法在环形前角膜上效果良好。需要在模型/真实眼睛上进行测试。正在继续努力改进视频晶状体测量方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验