Sbrissa Diego, Shisheva Assia
Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
J Biol Chem. 2005 Mar 4;280(9):7883-9. doi: 10.1074/jbc.M412729200. Epub 2004 Nov 16.
Unlike yeast, where hyperosmotic stress induces a dramatic increase in phosphatidylinositol 3,5-bisphosphate (PtdIns 3,5-P(2)) synthesis, in mammalian cells, although activating a complex array of signaling events, hyperosmotic stress fails to up-regulate PtdIns 3,5-P(2), indicating the PtdIns 3,5-P(2) pathway is not involved in mammalian osmo-protective responses. Here we report an unexpected and marked PtdIns 3,5-P(2) increase in response to hyperosmotic stress in differentiated 3T3-L1 adipocytes. Because this effect was not observed in the precursor preadipocytes, a specific role during acquisition of the adipocyte phenotype and transition into insulin-responsive cells could be suggested. However, acute insulin action did not result in a measurable PtdIns 3,5-P(2) rise, indicating the PtdIns 3,5-P(2) pathway is a specific hyperosmotically activated signaling cascade selectively operating in differentiated 3T3-L1 adipocytes. Hyperosmolarity activates different components of several kinase cascades, including p38 mitogen-activated protein and tyrosine kinases, but these appear to be separate from the activated PtdIns 3,5-P(2) pathway. Because PtdIns 3,5-P(2) is primarily produced by PIKfyve-catalyzed synthesis and requires the upstream activator hVac14 (called herein ArPIKfyve) that physically associates with and activates PIKfyve, we examined the contribution of ArPIKfyve-PIKfyve for the hyperosmotic stress-induced rise in PtdIns 3,5-P(2). Small interfering RNA-directed gene silencing to selectively deplete ArPIKfyve or PIKfyve in 3T3-L1 adipocytes determined the ArPIKfyve-PIKfyve axis fully accountable for the hyperosmotically activated PtdIns 3,5-P(2). Together these results reveal a previously uncharacterized PtdIns 3,5-P(2) pathway activated selectively in hyperosmotically stressed 3T3-L1 adipocytes and suggest a plausible role for PtdIns 3,5-P(2) in the osmo-protective response mechanism in this cell type.
与酵母不同,在酵母中高渗胁迫会导致磷脂酰肌醇3,5-二磷酸(PtdIns 3,5-P₂)合成显著增加,而在哺乳动物细胞中,尽管高渗胁迫会激活一系列复杂的信号事件,但它并不能上调PtdIns 3,5-P₂,这表明PtdIns 3,5-P₂途径不参与哺乳动物的渗透保护反应。在此,我们报告在分化的3T3-L1脂肪细胞中,高渗胁迫会引发意外且显著的PtdIns 3,5-P₂增加。由于在前体前脂肪细胞中未观察到这种效应,因此可以推测其在脂肪细胞表型获得以及向胰岛素反应性细胞转变过程中具有特定作用。然而,急性胰岛素作用并未导致可测量的PtdIns 3,5-P₂升高,这表明PtdIns 3,5-P₂途径是一种在分化的3T3-L1脂肪细胞中选择性起作用的特定高渗激活信号级联反应。高渗会激活包括p38丝裂原活化蛋白激酶和酪氨酸激酶在内的多个激酶级联反应的不同组分,但这些似乎与激活的PtdIns 3,5-P₂途径无关。由于PtdIns 3,5-P₂主要由PIKfyve催化合成产生,并且需要与PIKfyve物理结合并激活PIKfyve的上游激活剂hVac14(本文称为ArPIKfyve),我们研究了ArPIKfyve-PIKfyve对高渗胁迫诱导的PtdIns 3,5-P₂升高的作用。通过小干扰RNA介导的基因沉默选择性地耗尽3T3-L1脂肪细胞中的ArPIKfyve或PIKfyve,确定了ArPIKfyve-PIKfyve轴完全负责高渗激活的PtdIns 3,5-P₂。这些结果共同揭示了一种以前未被描述的PtdIns 3,5-P₂途径,该途径在高渗胁迫的3T3-L1脂肪细胞中被选择性激活,并提示PtdIns 3,5-P₂在这种细胞类型的渗透保护反应机制中可能发挥的作用。