Suppr超能文献

具有空间异质性、温度依赖性灌注的皮肤热传输的传输晶格模型。

Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.

作者信息

Gowrishankar T R, Stewart Donald A, Martin Gregory T, Weaver James C

机构信息

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Biomed Eng Online. 2004 Nov 17;3(1):42. doi: 10.1186/1475-925X-3-42.

Abstract

BACKGROUND

Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach.

METHODS

We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42 degrees C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image.

RESULTS

The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45 degrees C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip.

CONCLUSIONS

The heat transport system model of the skin was solved by exploiting the mathematical analogy between local thermal models and local electrical (charge transport) models, thereby allowing robust, circuit simulation software to obtain solutions to Kirchhoff's laws for the system model. Transport lattices allow systematic introduction of realistic geometry and spatially heterogeneous heat transport mechanisms. Local representations for both simple, passive functions and more complex local models can be easily and intuitively included into the system model of a tissue.

摘要

背景

生物热传递问题的研究需要评估温度的时空分布。这类问题传统上是用彭尼斯生物热方程来解决的。这里使用传输晶格方法对通过传导以及与温度相关的、空间上非均匀的血液灌注进行的热传输进行建模。

方法

我们通过使用一个晶格来表示热传输过程,该晶格代表了灌注组织中的彭尼斯生物热方程以及非灌注区域中的扩散。三层皮肤模型有一个非灌注的活表皮,以及真皮和皮下组织的更深区域,其灌注是恒定的或与温度相关的。考虑了两种情况:(1)表面接触加热和(2)空间分布加热。该模型与预测皮肤内不同功率沉积方法下的瞬态和稳态温度升高相关。通过在活组织温度超过42摄氏度的位置使用阿伦尼乌斯型速率方程来估计累积热损伤。还通过从组织学图像创建的皮肤二维模型来说明空间温度分布的预测。

结果

通过与一个具有均匀热特性且两端保持恒定温度的空间分布均匀汇的平板的解析解进行比较,验证了传输晶格方法。对于典型的经皮血气传感条件,即使皮肤长时间接触45摄氏度的表面,估计的损伤也很小。皮肤热特性的空间异质性会导致在10 GHz电磁场暴露期间温度分布不均匀。一个逼真的皮肤二维模型表明,当由热线尖端加热时,组织异质性不会导致显著的局部温度升高。

结论

通过利用局部热模型与局部电(电荷传输)模型之间的数学类比,求解了皮肤的热传输系统模型,从而使强大的电路仿真软件能够获得系统模型的基尔霍夫定律的解。传输晶格允许系统地引入逼真的几何形状和空间异质的热传输机制。简单的被动函数和更复杂的局部模型的局部表示都可以轻松且直观地纳入组织的系统模型中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6a1/544831/62fff477285e/1475-925X-3-42-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验