Zucker Birgit, Luthi-Carter Ruth, Kama Jibrin A, Dunah Anthone W, Stern Edward A, Fox Jonathan H, Standaert David G, Young Anne B, Augood Sarah J
Department of Neurology, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Boston 02129, USA.
Hum Mol Genet. 2005 Jan 15;14(2):179-89. doi: 10.1093/hmg/ddi014. Epub 2004 Nov 17.
Transcriptional dysregulation has been described as a central mechanism in the pathogenesis of Huntington's disease (HD), in which medium spiny projection neurons (MSN) selectively degenerate whereas neuronal nitric-oxide-synthase-positive interneurons (nNOS-IN) survive. In order to begin to understand this differential vulnerability we compared mRNA levels of selected genes involved in N-methyl-D-aspartate (NMDA) glutamate receptor and calcium (Ca2+) signaling pathways in MSN and nNOS-IN from 12-week-old R6/2 mice, a transgenic mouse model of HD and wild-type littermates. We undertook a laser capture microdissection (LCM) study to examine the contribution of transcriptional dysregulation in candidate genes involved in these two signaling pathways in discrete populations of striatal neurons. The use of LCM in combination with quantitative real-time polymerase chain reaction (Q-PCR) allowed us to quantify the neuronal abundance of candidate mRNAs. We found different transcriptional alterations in R6/2 neurons for both MSN and nNOS-IN, indicating that global transcriptional dysregulation alone does not account for selective vulnerability. Further, we observed a striking enrichment of several mRNAs in the nNOS-IN population, including that for the NMDA receptor subunit NR2D, the postsynaptic density protein 95 (PSD-95) and the huntingtin-associated protein 1 (HAP1) as well as nitric-oxide-synthase (nNOS) mRNA itself. The higher expression levels of these molecules in nNOS-IN when compared with MSN together with an association of nNOS, NR2D and HAP1 in a protein complex with PSD-95 suggest that these proteins may be involved in protective pathways that contribute to the resistance of this interneuron population to neurodegeneration in HD.
转录失调被认为是亨廷顿舞蹈病(HD)发病机制的核心机制,在HD中,中等棘状投射神经元(MSN)选择性退化,而神经元型一氧化氮合酶阳性中间神经元(nNOS-IN)存活。为了开始理解这种差异易损性,我们比较了12周龄R6/2小鼠(一种HD转基因小鼠模型)和野生型同窝小鼠的MSN及nNOS-IN中参与N-甲基-D-天冬氨酸(NMDA)谷氨酸受体和钙(Ca2+)信号通路的特定基因的mRNA水平。我们进行了一项激光捕获显微切割(LCM)研究,以检查这两个信号通路中候选基因的转录失调在纹状体神经元离散群体中的作用。LCM与定量实时聚合酶链反应(Q-PCR)结合使用,使我们能够量化候选mRNA的神经元丰度。我们发现R6/2神经元中的MSN和nNOS-IN都有不同的转录改变,这表明仅整体转录失调并不能解释选择性易损性。此外,我们观察到nNOS-IN群体中几种mRNA显著富集,包括NMDA受体亚基NR2D、突触后致密蛋白95(PSD-95)、亨廷顿蛋白相关蛋白1(HAP1)以及一氧化氮合酶(nNOS)mRNA本身。与MSN相比,这些分子在nNOS-IN中的表达水平更高,以及nNOS、NR2D和HAP1与PSD-95在蛋白质复合物中的关联表明,这些蛋白质可能参与了保护性途径,有助于该中间神经元群体抵抗HD中的神经退行性变。