Ma Xiaofeng, Suga Nobuo
Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
J Neurophysiol. 2004 Dec;92(6):3192-9. doi: 10.1152/jn.00301.2004.
Repetitive acoustic stimulation, auditory fear conditioning, and focal electric stimulation of the auditory cortex (AC) each evoke the reorganization of the central auditory system. Our current study of the big brown bat indicates that focal electric stimulation of the AC evokes center-surround reorganization of the frequency map of the AC. In the center, the neuron's best frequencies (BFs), together with their frequency-tuning curves, shift toward the BFs of electrically stimulated cortical neurons (centripetal BF shifts). In the surround, BFs shift away from the stimulated cortical BF (centrifugal BF shifts). Centripetal BF shifts are much larger than centrifugal BF shifts. An antagonist (bicuculline methiodide) of inhibitory synaptic transmitter receptors changes centrifugal BF shifts into centripetal BF shifts, whereas its agonist (muscimol) changes centripetal BF shifts into centrifugal BF shifts. This reorganization of the AC thus depends on a balance between facilitation and inhibition evoked by focal cortical electric stimulation. Unlike neurons in the AC of the big brown bat, neurons in the Doppler-shifted constant-frequency (DSCF) area of the AC of the mustached bat are highly specialized for fine-frequency analysis and show almost exclusively centrifugal BF shifts for focal electric stimulation of the DSCF area. Our current data indicate that in the highly specialized area, lateral inhibition is strong compared with the less-specialized area and that the specialized and nonspecialized areas both share the same inhibitory mechanism for centrifugal BF shifts.
重复性听觉刺激、听觉恐惧条件反射以及听觉皮层(AC)的局部电刺激均可引起中枢听觉系统的重组。我们目前对大棕蝠的研究表明,AC的局部电刺激可引起AC频率图谱的中心-外周重组。在中心区域,神经元的最佳频率(BFs)及其频率调谐曲线会向电刺激皮层神经元的BFs方向移动(向心性BF移动)。在外周区域,BFs会远离受刺激的皮层BF(离心性BF移动)。向心性BF移动比离心性BF移动大得多。抑制性突触递质受体的拮抗剂(甲基荷包牡丹碱)可将离心性BF移动转变为向心性BF移动,而其激动剂(蝇蕈醇)则可将向心性BF移动转变为离心性BF移动。因此,AC的这种重组取决于局部皮层电刺激所诱发的易化和抑制之间的平衡。与大棕蝠AC中的神经元不同,髯蝠AC的多普勒频移恒频(DSCF)区域中的神经元高度专门用于精细频率分析,并且对于DSCF区域的局部电刺激几乎仅表现出离心性BF移动。我们目前的数据表明,在高度专门化的区域中,与不太专门化的区域相比,侧向抑制更强,并且专门化和非专门化区域对于离心性BF移动都具有相同的抑制机制。