Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
J Neurophysiol. 2012 Aug 1;108(3):935-42. doi: 10.1152/jn.00251.2012. Epub 2012 May 2.
The central auditory system consists of the lemniscal and nonlemniscal pathways or systems, which are anatomically and physiologically different from each other. In the thalamus, the ventral division of the medial geniculate body (MGBv) belongs to the lemniscal system, whereas its medial (MGBm) and dorsal (MGBd) divisions belong to the nonlemniscal system. Lemniscal neurons are sharply frequency-tuned and provide highly frequency-specific information to the primary auditory cortex (AI), whereas nonlemniscal neurons are generally broadly frequency-tuned and project widely to cortical auditory areas including AI. These two systems are presumably different not only in auditory signal processing, but also in eliciting cortical plastic changes. Electric stimulation of narrowly frequency-tuned MGBv neurons evokes the shift of the frequency-tuning curves of AI neurons toward the tuning curves of the stimulated MGBv neurons (tone-specific plasticity). In contrast, electric stimulation of broadly frequency-tuned MGBm neurons augments the auditory responses of AI neurons and broadens their frequency-tuning curves (nonspecific plasticity). In our current studies, we found that electric stimulation of AI evoked tone-specific plastic changes of the MGBv neurons, whereas it degraded the frequency tuning of MGBm neurons by inhibiting their auditory responses. AI apparently modulates the lemniscal and nonlemniscal thalamic neurons in quite different ways. High MGBm activity presumably makes AI neurons less favorable for fine auditory signal processing, whereas high MGBv activity makes AI neurons more suitable for fine processing of specific auditory signals and reduces MGBm activity.
中枢听觉系统包括索状和非索状通路或系统,它们在解剖和生理上彼此不同。在丘脑,内侧膝状体核腹侧部(MGBv)属于索状系统,而其内侧部(MGBm)和背侧部(MGBd)属于非索状系统。索状神经元的频率调谐非常尖锐,向初级听觉皮层(AI)提供高度频率特异性的信息,而非索状神经元的频率调谐通常较宽,广泛投射到包括 AI 的皮质听觉区域。这两个系统不仅在听觉信号处理方面有所不同,而且在引发皮质可塑性变化方面也有所不同。窄频调谐 MGBv 神经元的电刺激会引起 AI 神经元的频率调谐曲线向受刺激的 MGBv 神经元的调谐曲线(音调特异性可塑性)移动。相比之下,宽频调谐 MGBm 神经元的电刺激会增强 AI 神经元的听觉反应,并拓宽其频率调谐曲线(非特异性可塑性)。在我们目前的研究中,我们发现 AI 的电刺激会引起 MGBv 神经元的音调特异性可塑性变化,而抑制其听觉反应则会降低 MGBm 神经元的频率调谐。AI 显然以截然不同的方式调节索状和非索状丘脑神经元。高 MGBm 活性可能会使 AI 神经元不太有利于精细的听觉信号处理,而高 MGBv 活性则会使 AI 神经元更适合特定听觉信号的精细处理,并降低 MGBm 活性。