Suppr超能文献

初级听觉皮层对丘脑听觉神经元的调制。

Modulation of thalamic auditory neurons by the primary auditory cortex.

机构信息

Department of Biology, Washington University, St. Louis, Missouri 63130, USA.

出版信息

J Neurophysiol. 2012 Aug 1;108(3):935-42. doi: 10.1152/jn.00251.2012. Epub 2012 May 2.

Abstract

The central auditory system consists of the lemniscal and nonlemniscal pathways or systems, which are anatomically and physiologically different from each other. In the thalamus, the ventral division of the medial geniculate body (MGBv) belongs to the lemniscal system, whereas its medial (MGBm) and dorsal (MGBd) divisions belong to the nonlemniscal system. Lemniscal neurons are sharply frequency-tuned and provide highly frequency-specific information to the primary auditory cortex (AI), whereas nonlemniscal neurons are generally broadly frequency-tuned and project widely to cortical auditory areas including AI. These two systems are presumably different not only in auditory signal processing, but also in eliciting cortical plastic changes. Electric stimulation of narrowly frequency-tuned MGBv neurons evokes the shift of the frequency-tuning curves of AI neurons toward the tuning curves of the stimulated MGBv neurons (tone-specific plasticity). In contrast, electric stimulation of broadly frequency-tuned MGBm neurons augments the auditory responses of AI neurons and broadens their frequency-tuning curves (nonspecific plasticity). In our current studies, we found that electric stimulation of AI evoked tone-specific plastic changes of the MGBv neurons, whereas it degraded the frequency tuning of MGBm neurons by inhibiting their auditory responses. AI apparently modulates the lemniscal and nonlemniscal thalamic neurons in quite different ways. High MGBm activity presumably makes AI neurons less favorable for fine auditory signal processing, whereas high MGBv activity makes AI neurons more suitable for fine processing of specific auditory signals and reduces MGBm activity.

摘要

中枢听觉系统包括索状和非索状通路或系统,它们在解剖和生理上彼此不同。在丘脑,内侧膝状体核腹侧部(MGBv)属于索状系统,而其内侧部(MGBm)和背侧部(MGBd)属于非索状系统。索状神经元的频率调谐非常尖锐,向初级听觉皮层(AI)提供高度频率特异性的信息,而非索状神经元的频率调谐通常较宽,广泛投射到包括 AI 的皮质听觉区域。这两个系统不仅在听觉信号处理方面有所不同,而且在引发皮质可塑性变化方面也有所不同。窄频调谐 MGBv 神经元的电刺激会引起 AI 神经元的频率调谐曲线向受刺激的 MGBv 神经元的调谐曲线(音调特异性可塑性)移动。相比之下,宽频调谐 MGBm 神经元的电刺激会增强 AI 神经元的听觉反应,并拓宽其频率调谐曲线(非特异性可塑性)。在我们目前的研究中,我们发现 AI 的电刺激会引起 MGBv 神经元的音调特异性可塑性变化,而抑制其听觉反应则会降低 MGBm 神经元的频率调谐。AI 显然以截然不同的方式调节索状和非索状丘脑神经元。高 MGBm 活性可能会使 AI 神经元不太有利于精细的听觉信号处理,而高 MGBv 活性则会使 AI 神经元更适合特定听觉信号的精细处理,并降低 MGBm 活性。

相似文献

1
Modulation of thalamic auditory neurons by the primary auditory cortex.初级听觉皮层对丘脑听觉神经元的调制。
J Neurophysiol. 2012 Aug 1;108(3):935-42. doi: 10.1152/jn.00251.2012. Epub 2012 May 2.
4
Auditory cortex directs the input-specific remodeling of thalamus.听觉皮层指导丘脑的输入特异性重塑。
Hear Res. 2015 Oct;328:1-7. doi: 10.1016/j.heares.2015.06.016. Epub 2015 Jul 2.
9
A Role for Auditory Corticothalamic Feedback in the Perception of Complex Sounds.听觉皮质丘脑反馈在复杂声音感知中的作用。
J Neurosci. 2017 Jun 21;37(25):6149-6161. doi: 10.1523/JNEUROSCI.0397-17.2017. Epub 2017 May 30.

引用本文的文献

7
The Effects of Urethane on Rat Outer Hair Cells.氨基甲酸乙酯对大鼠外毛细胞的影响。
Neural Plast. 2016;2016:3512098. doi: 10.1155/2016/3512098. Epub 2016 Dec 5.
8
Corticofugal modulation of peripheral auditory responses.外周听觉反应的皮质下行调制
Front Syst Neurosci. 2015 Sep 30;9:134. doi: 10.3389/fnsys.2015.00134. eCollection 2015.
9
Central gain control in tinnitus and hyperacusis.耳鸣和听觉过敏中的中枢增益控制。
Front Neurol. 2014 Oct 24;5:206. doi: 10.3389/fneur.2014.00206. eCollection 2014.

本文引用的文献

4
Corticofugal modulation of initial sound processing in the brain.大脑中初始声音处理的皮质下行调制
J Neurosci. 2008 Nov 5;28(45):11615-21. doi: 10.1523/JNEUROSCI.3972-08.2008.
7
Role of corticofugal feedback in hearing.皮质离心反馈在听觉中的作用。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Feb;194(2):169-83. doi: 10.1007/s00359-007-0274-2. Epub 2008 Jan 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验