Bailey Lorna E, Sesé Luis M
Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 9, 28040 Madrid, Spain.
J Chem Phys. 2004 Nov 22;121(20):10076-87. doi: 10.1063/1.1808115.
A study of the asymptotic decay of the pair radial correlations in the bare quantum hard-sphere (QHS) fluid and in the quantum hard-sphere Yukawa (QHSY) fluid is presented. The conditions explored are far from quantum exchange and are contained within the region (0.1<or=rho(N) ()<or=0.8; 0.116 <or= lambda(B) ()<or= 0.9). The three types of pair radial correlations existing in path-integral quantum monatomic fluids (instantaneous, pair linear response and centroids) are analyzed by utilizing the complex poles methodology expounded by Evans et al. [J. Chem. Phys. 100, 591 (1994); Phys. Rev. E 59, 1435 (1999)] complemented with Ornstein-Zernike frameworks appropriate for quantum fluids. Given that there is no analytical theory of the quantum direct correlation functions, the present applications rely on the short-ranged methodology of asymptotics augmented with increasing ranges of the cutoff. The following main issues of interest are addressed: the influence of the sample size on the decay properties, the features of the pole patterns arising from the asymptotic calculations, and the effect of Yukawa attractions on the decay properties of systems composed of quantum hard spheres. The results show that the decays in the QHS fluid are of the exponentially damped oscillatory type, and hence no indication of Fisher-Widom lines has been found. On the other hand, in the QHSY fluid, both pure exponential (monotonic) and exponentially damped oscillatory decays may be obtained. Consequently, there is evidence that Fisher-Widom lines can be expected for the three pair radial correlations in the QHSY fluid.
本文对裸量子硬球(QHS)流体和量子硬球汤川(QHSY)流体中对径向关联的渐近衰减进行了研究。所探索的条件远离量子交换,且包含在区域(0.1≤ρ(N)≤0.8;0.116≤λ(B)≤0.9)内。利用Evans等人阐述的复极点方法[《化学物理杂志》100, 591 (1994); 《物理评论E》59, 1435 (1999)],并辅以适用于量子流体的奥恩斯坦 - 泽尔尼克框架,对路径积分量子单原子流体中存在的三种对径向关联(瞬时、对线性响应和质心)进行了分析。鉴于量子直接关联函数没有解析理论,当前应用依赖于渐近的短程方法,并增加了截止范围。解决了以下主要感兴趣的问题:样本大小对衰减特性的影响、渐近计算产生的极点模式特征以及汤川吸引对由量子硬球组成的系统衰减特性的影响。结果表明,QHS流体中的衰减是指数衰减振荡型的,因此未发现费希尔 - 威多姆线的迹象。另一方面,在QHSY流体中,可以得到纯指数(单调)和指数衰减振荡两种衰减。因此,有证据表明,对于QHSY流体中的三种对径向关联,可以预期存在费希尔 - 威多姆线。