Sesé Luis M, Bailey Lorna E
Departamento de Ciencias y Técnicas Fisicoquimicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 9, 28040 Madrid, Spain.
J Chem Phys. 2007 Apr 28;126(16):164509. doi: 10.1063/1.2718525.
The structural features of the quantum hard-sphere system in the region of the fluid-face-centered-cubic-solid transition, for reduced number densities 0.45<rhoN*<or=0.9 (reduced de Broglie wavelengths lambdaB*<or=0.8), are presented. The parameters obtained with path-integral Monte Carlo simulations for the fluid, amorphous, and solid phases are related to the distinct sorts of pair correlations that can be defined in a path-integral quantum fluid (instantaneous, continuous linear response and centroids). These parameters cover the pair radial correlation functions, the configurational structure factors, the order parameters Q4 and Q6, and the radii of gyration of the path-integral necklaces. Also, the fluid static structure factors have been computed by solving appropriate Ornstein-Zernike equations. A number of significant regularities in the above parameters involving both sides of the crystallization line are reported, and a comparison with results for Lennard-Jones quantum systems that can be found in the literature is made. On the other hand, the main amplitudes of the quantum fluid structure factors follow a complex behavior along the crystallization line, which points to difficulties in identifying a neat rule, similar to that of Hansen-Verlet for classical fluids, for these quantum amplitudes. To complete this study a further analysis of the instantaneous and centroid triplet correlations in the vicinities of the fluid-face-centered-cubic-solid phase transition of hard spheres has been performed, and some interesting differences between the classical and quantum melting-freezing transition are observed.
本文给出了量子硬球系统在流体-面心立方固体转变区域内,约化数密度0.45<ρN*≤0.9(约化德布罗意波长λB*≤0.8)时的结构特征。通过路径积分蒙特卡罗模拟得到的流体、非晶态和固态相的参数,与路径积分量子流体中可定义的不同类型的对关联(瞬时、连续线性响应和质心)相关。这些参数包括对径向关联函数、构型结构因子、序参量Q4和Q6以及路径积分项链的回转半径。此外,通过求解适当的奥恩斯坦-泽尼克方程计算了流体静态结构因子。报告了上述参数中涉及结晶线两侧的一些显著规律,并与文献中可找到的 Lennard-Jones 量子系统的结果进行了比较。另一方面,量子流体结构因子的主要振幅沿结晶线呈现复杂行为,这表明难以确定类似于经典流体的 Hansen-Verlet 规则那样简洁的规则来描述这些量子振幅。为了完成这项研究,对硬球流体-面心立方固体相变附近的瞬时和质心三重关联进行了进一步分析,观察到了经典和量子熔化-凝固转变之间的一些有趣差异。