Pineda Melissa, Gregory Brian D, Szczypinski Bridget, Baxter Kimberly R, Hochschild Ann, Miller Eric S, Hinton Deborah M
Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8, Room 2A-13, National Institutes of Health, Bethesda, MD 20892-0830, USA.
J Mol Biol. 2004 Dec 10;344(5):1183-97. doi: 10.1016/j.jmb.2004.10.003.
Anti-sigma70 factors interact with sigma70 proteins, the specificity subunits of prokaryotic RNA polymerase. The bacteriophage T4 anti-sigma70 protein, AsiA, binds tightly to regions 4.1 and 4.2 of the sigma70 subunit of Escherichia coli RNA polymerase and inhibits transcription from sigma70 promoters that require recognition of the canonical sigma70 -35 DNA sequence. In the presence of the T4 transcription activator MotA, AsiA also functions as a co-activator of transcription from T4 middle promoters, which retain the canonical sigma70 -10 consensus sequence but have a MotA box sequence centered at -30 rather than the sigma70 -35 sequence. The E.coli anti-sigma70 protein Rsd also interacts with region 4.2 of sigma70 and inhibits transcription from sigma70 promoters. Our sequence comparisons of T4 AsiA with Rsd, with the predicted AsiA orthologs of the T4-type phages RB69, 44RR, KVP40, and Aeh1, and with AlgQ, a regulator of alginate production in Pseudomonas aeruginosa indicate that these proteins share conserved amino acid residues at positions known to be important for the binding of T4 AsiA to sigma70 region 4. We show that, like T4 AsiA, Rsd binds to sigma70 in a native protein gel and, as with T4 AsiA, a L18S substitution in Rsd disrupts this complex. Previous work has assigned sigma70 amino acid F563, within region 4.1, as a critical determinant for AsiA binding. This residue is also involved in the binding of sigma70 to the beta-flap of core, suggesting that AsiA inhibits transcription by disrupting the interaction between sigma70 region 4.1 and the beta-flap. We find that as with T4 AsiA, the interaction of KVP40 AsiA, Rsd, or AlgQ with sigma70 region 4 is diminished by the substitution F563Y. We also demonstrate that like T4 AsiA and Rsd, KVP40 AsiA inhibits transcription from sigma70-dependent promoters. We speculate that the phage AsiA orthologs, Rsd, and AlgQ are members of a related family in T4-type phage and bacteria, which interact similarly with primary sigma factors. In addition, we show that even though a clear MotA ortholog has not been identified in the KVP40 genome and the phage genome appears to lack typical middle promoter sequences, KVP40 AsiA activates transcription from T4 middle promoters in the presence of T4 MotA. We speculate that KVP40 encodes a protein that is dissimilar in sequence, but functionally equivalent, to T4 MotA.
抗σ70因子与σ70蛋白相互作用,σ70蛋白是原核RNA聚合酶的特异性亚基。噬菌体T4抗σ70蛋白AsiA紧密结合大肠杆菌RNA聚合酶σ70亚基的4.1和4.2区域,并抑制来自需要识别典型σ70 -35 DNA序列的σ70启动子的转录。在T4转录激活因子MotA存在的情况下,AsiA还作为T4中期启动子转录的共激活因子发挥作用,这些启动子保留了典型的σ70 -10共有序列,但有一个以-30为中心的MotA框序列而非σ70 -35序列。大肠杆菌抗σ70蛋白Rsd也与σ70的4.2区域相互作用,并抑制来自σ70启动子的转录。我们将T4 AsiA与Rsd、T4型噬菌体RB69、44RR、KVP40和Aeh1的预测AsiA直系同源物以及铜绿假单胞菌中藻酸盐产生的调节因子AlgQ进行序列比较,结果表明这些蛋白质在已知对T4 AsiA与σ70区域4结合很重要的位置共享保守氨基酸残基。我们发现,与T4 AsiA一样,Rsd在天然蛋白质凝胶中与σ70结合,并且与T4 AsiA一样,Rsd中的L18S替换会破坏这种复合物。先前的工作已将区域4.1内的σ70氨基酸F563指定为AsiA结合的关键决定因素。该残基也参与σ70与核心β-侧翼的结合,这表明AsiA通过破坏σ70区域4.1与β-侧翼之间的相互作用来抑制转录。我们发现,与T4 AsiA一样,KVP40 AsiA、Rsd或AlgQ与σ70区域4的相互作用会因F563Y替换而减弱。我们还证明,与T4 AsiA和Rsd一样,KVP40 AsiA抑制来自σ70依赖性启动子的转录。我们推测噬菌体AsiA直系同源物、Rsd和AlgQ是T4型噬菌体和细菌中一个相关家族的成员,它们与主要σ因子的相互作用类似。此外,我们表明,尽管在KVP40基因组中尚未鉴定出明确的MotA直系同源物,并且噬菌体基因组似乎缺乏典型的中期启动子序列,但KVP40 AsiA在T4 MotA存在的情况下激活来自T4中期启动子的转录。我们推测KVP40编码一种在序列上不同但功能等效于T4 MotA的蛋白质。