James Tamara D, Cardozo Timothy, Abell Lauren E, Hsieh Meng-Lun, Jenkins Lisa M Miller, Jha Saheli S, Hinton Deborah M
Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University School of Medicine, 180 Varick Street, Room 637, New York, NY 10014, USA.
Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University School of Medicine, 180 Varick Street, Room 637, New York, NY 10014, USA
Nucleic Acids Res. 2016 Sep 19;44(16):7974-88. doi: 10.1093/nar/gkw656. Epub 2016 Jul 25.
The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ(70) subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ(70) Region 4, the N-terminal domain of MotA [MotA(NTD)], and the C-terminal domain of MotA [MotA(CTD)]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation.
RNA聚合酶(RNAP)在正确的时间选择正确的启动子序列的能力是所有生物体基因表达调控的基础。然而,完整的激活剂/RNAP/DNA复合物只有一种晶体结构。在一个称为σ夺取的过程中,噬菌体T4使用一种激活剂(MotA)和一种共激活剂(AsiA)激活一类噬菌体启动子,它们通过与RNAP的σ(70)亚基相互作用发挥功能。我们利用多个实验确定的三维结构(大肠杆菌RNAP、嗜热栖热菌RNAP/DNA复合物、AsiA /σ(70)区域4、MotA的N端结构域[MotA(NTD)]和MotA的C端结构域[MotA(CTD)])、分子建模以及大量生化观察结果,开发了一种基于结构的整体σ夺取模型,这些观察结果表明了蛋白质彼此之间以及与DNA的相对位置。我们的结果可视化了AsiA/MotA如何将σ以及因此将RNAP活性重定向到T4启动子DNA,并在分子水平上证明了转录因子与RNAP的小片段之间巧妙的相互作用如何改变启动子特异性。此外,我们的模型为理解RNAP的β亚基(G1249D)内的一个突变如何损害σ夺取提供了一个合理的基础,该突变远离AsiA或MotA。