Clay John R
Ion Channel Biophysics Group, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 36 Room 4A21, 9000 Rockville Pike, Bethesda, MD 20892, USA.
Prog Biophys Mol Biol. 2005 May;88(1):59-90. doi: 10.1016/j.pbiomolbio.2003.12.004.
The original papers of Hodgkin and Huxley (J. Physiol. 116 (1952a) 449, J. Physiol. 116 (1952b) 473, J. Physiol. 116 (1952c) 497, J. Physiol. 117 (1952d) 500) have provided a benchmark in our understanding of cellular excitability. Not surprisingly, their model of the membrane action potential (AP) requires revisions even for the squid giant axon, the preparation for which it was originally formulated. The mechanisms they proposed for the voltage-gated potassium and sodium ion currents, IK, and INa, respectively, have been superceded by more recent formulations that more accurately describe voltage-clamp measurements of these components. Moreover, the current-voltage relation for IK has a non-linear dependence upon driving force that is well described by the Goldman-Hodgkin-Katz (GHK) relation, rather than the linear dependence on driving force found by Hodgkin and Huxley. Furthermore, accumulation of potassium ions in the extracellular space adjacent to the axolemma appears to be significant even during a single AP. This paper describes the influence of these various modifications in their model on the mathematically reconstructed AP. The GHK and K+ accumulation results alter the shape of the AP, whereas the modifications in IK and INa gating have surprisingly little effect. Perhaps the most significant change in their model concerns the amplitude of INa, which they appear to have overestimated by a factor of two. This modification together with the GHK and the K+ accumulation results largely remove the discrepancies between membrane excitability of the squid giant axon and the Hodgkin and Huxley (J. Physiol. 117 (1952d) 500) model previously described (Clay, J. Neurophysiol. 80 (1998) 903).
霍奇金和赫胥黎的原始论文(《生理学杂志》116卷(1952年a期)449页、《生理学杂志》116卷(1952年b期)473页、《生理学杂志》116卷(1952年c期)497页、《生理学杂志》117卷(1952年d期)500页)为我们理解细胞兴奋性提供了一个基准。不出所料,他们的膜动作电位(AP)模型即使对于鱿鱼巨大轴突(该模型最初就是针对此标本构建的)也需要修正。他们分别提出的电压门控钾离子和钠离子电流(IK和INa)的机制,已被更精确描述这些成分电压钳测量结果的更新公式所取代。此外,IK的电流 - 电压关系对驱动力具有非线性依赖性,这可以用戈德曼 - 霍奇金 - 卡茨(GHK)关系很好地描述,而不是霍奇金和赫胥黎所发现的对驱动力的线性依赖性。此外,即使在单个动作电位期间,轴膜相邻细胞外空间中钾离子的积累似乎也很显著。本文描述了他们模型中的这些各种修正对数学重构的动作电位的影响。GHK和钾离子积累结果改变了动作电位的形状,而IK和INa门控的修正效果却出奇地小。也许他们模型中最显著的变化涉及INa的幅度,他们似乎高估了两倍。这一修正连同GHK和钾离子积累结果在很大程度上消除了鱿鱼巨大轴突的膜兴奋性与先前描述的霍奇金和赫胥黎(《生理学杂志》117卷(1952年d期)500页)模型之间的差异(克莱,《神经生理学杂志》80卷(1998年)903页)。