Hsu Wei-Chun, Nenov Miroslav N, Shavkunov Alexander, Panova Neli, Zhan Ming, Laezza Fernanda
Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America; M.D./Ph.D. Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America.
Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America.
PLoS One. 2015 Feb 6;10(2):e0117246. doi: 10.1371/journal.pone.0117246. eCollection 2015.
Kinases play fundamental roles in the brain. Through complex signaling pathways, kinases regulate the strength of protein:protein interactions (PPI) influencing cell cycle, signal transduction, and electrical activity of neurons. Changes induced by kinases on neuronal excitability, synaptic plasticity and brain connectivity are linked to complex brain disorders, but the molecular mechanisms underlying these cellular events remain for the most part elusive. To further our understanding of brain disease, new methods for rapidly surveying kinase pathways in the cellular context are needed. The bioluminescence-based luciferase complementation assay (LCA) is a powerful, versatile toolkit for the exploration of PPI. LCA relies on the complementation of two firefly luciferase protein fragments that are functionally reconstituted into the full luciferase enzyme by two interacting binding partners. Here, we applied LCA in live cells to assay 12 kinase pathways as regulators of the PPI complex formed by the voltage-gated sodium channel, Nav1.6, a transmembrane ion channel that elicits the action potential in neurons and mediates synaptic transmission, and its multivalent accessory protein, the fibroblast growth factor 14 (FGF14). Through extensive dose-dependent validations of structurally-diverse kinase inhibitors and hierarchical clustering, we identified the PI3K/Akt pathway, the cell-cycle regulator Wee1 kinase, and protein kinase C (PKC) as prospective regulatory nodes of neuronal excitability through modulation of the FGF14:Nav1.6 complex. Ingenuity Pathway Analysis shows convergence of these pathways on glycogen synthase kinase 3 (GSK3) and functional assays demonstrate that inhibition of GSK3 impairs excitability of hippocampal neurons. This combined approach provides a versatile toolkit for rapidly surveying PPI signaling, allowing the discovery of new modular pathways centered on GSK3 that might be the basis for functional alterations between the normal and diseased brain.
激酶在大脑中发挥着重要作用。通过复杂的信号通路,激酶调节蛋白质:蛋白质相互作用(PPI)的强度,影响细胞周期、信号转导和神经元的电活动。激酶对神经元兴奋性、突触可塑性和脑连接性所诱导的变化与复杂的脑部疾病相关,但这些细胞事件背后的分子机制在很大程度上仍不清楚。为了进一步了解脑部疾病,需要新的方法来在细胞环境中快速检测激酶通路。基于生物发光的荧光素酶互补分析(LCA)是一种用于探索PPI的强大且通用的工具包。LCA依赖于两个萤火虫荧光素酶蛋白片段的互补,这两个片段通过两个相互作用的结合伙伴在功能上重新组装成完整的荧光素酶。在这里,我们在活细胞中应用LCA来检测12条激酶通路,这些通路作为由电压门控钠通道Nav1.6形成的PPI复合物的调节因子,Nav1.6是一种跨膜离子通道,可引发神经元的动作电位并介导突触传递,以及其多价辅助蛋白成纤维细胞生长因子14(FGF14)。通过对结构多样的激酶抑制剂进行广泛的剂量依赖性验证和层次聚类,我们确定PI3K/Akt通路、细胞周期调节因子Wee1激酶和蛋白激酶C(PKC)是通过调节FGF14:Nav1.6复合物来调节神经元兴奋性的潜在调节节点。 Ingenuity通路分析显示这些通路在糖原合酶激酶3(GSK3)上汇聚,功能分析表明抑制GSK3会损害海马神经元的兴奋性。这种综合方法提供了一个用于快速检测PPI信号的通用工具包,允许发现以GSK3为中心的新的模块化通路,这些通路可能是正常和患病大脑之间功能改变的基础。