Kong Stephanie E, Kobor Michael S, Krogan Nevan J, Somesh Baggavalli P, Søgaard T Max M, Greenblatt Jack F, Svejstrup Jesper Q
Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom.
J Biol Chem. 2005 Feb 11;280(6):4299-306. doi: 10.1074/jbc.M411071200. Epub 2004 Nov 24.
Fcp1 de-phosphorylates the RNA polymerase II (RNAPII) C-terminal domain (CTD) in vitro, and mutation of the yeast FCP1 gene results in global transcription defects and increased CTD phosphorylation levels in vivo. Here we show that the Fcp1 protein associates with elongating RNAPII holoenzyme in vitro. Our data suggest that the association of Fcp1 with elongating polymerase results in CTD de-phosphorylation when the native ternary RNAPII0-DNA-RNA complex is disrupted. Surprisingly, highly purified yeast Fcp1 dephosphorylates serine 5 but not serine 2 of the RNAPII CTD repeat. Only free RNAPII0(Ser-5) and not RNAPII0-DNA-RNA ternary complexes act as a good substrate in the Fcp1 CTD de-phosphorylation reaction. In contrast, TFIIH CTD kinase has a pronounced preference for RNAPII incorporated into a ternary complex. Interestingly, the Fcp1 reaction mechanism appears to entail phosphoryl transfer from RNAPII0 directly to Fcp1. Elongator fails to affect the phosphatase activity of Fcp1 in vitro, but genetic evidence points to a functional overlap between Elongator and Fcp1 in vivo. Genetic interactions between Elongator and a number of other transcription factors are also reported. Together, these results shed new light on mechanisms that drive the transcription cycle and point to a role for Fcp1 in the recycling of RNAPII after dissociation from active genes.
Fcp1在体外可使RNA聚合酶II(RNAPII)的C末端结构域(CTD)去磷酸化,酵母FCP1基因突变会导致体内整体转录缺陷以及CTD磷酸化水平升高。在此我们表明,Fcp1蛋白在体外与延伸中的RNAPII全酶相关联。我们的数据表明,当天然的三元RNAPII0 - DNA - RNA复合物被破坏时,Fcp1与延伸中的聚合酶的关联会导致CTD去磷酸化。令人惊讶的是,高度纯化的酵母Fcp1使RNAPII CTD重复序列的丝氨酸5去磷酸化,而不是丝氨酸2。在Fcp1 CTD去磷酸化反应中,只有游离的RNAPII0(Ser - 5)而不是RNAPII0 - DNA - RNA三元复合物是良好的底物。相反,TFIIH CTD激酶对掺入三元复合物中的RNAPII有明显的偏好。有趣的是,Fcp1的反应机制似乎需要磷酸基团从RNAPII0直接转移到Fcp1。延伸因子在体外未能影响Fcp1的磷酸酶活性,但遗传学证据表明延伸因子与Fcp1在体内存在功能重叠。也报道了延伸因子与许多其他转录因子之间的遗传相互作用。总之,这些结果为驱动转录循环机制提供了新的见解,并指出Fcp1在从活性基因解离后RNAPII的循环利用中发挥作用。