Suppr超能文献

基因共表达研究中数据标准化替代方法的验证

Validation of alternative methods of data normalization in gene co-expression studies.

作者信息

Reverter Antonio, Barris Wes, McWilliam Sean, Byrne Keren A, Wang Yong H, Tan Siok H, Hudson Nick, Dalrymple Brian P

机构信息

Bioinformatics Group, CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia.

出版信息

Bioinformatics. 2005 Apr 1;21(7):1112-20. doi: 10.1093/bioinformatics/bti124. Epub 2004 Nov 25.

Abstract

MOTIVATION

Clusters of genes encoding proteins with related functions, or in the same regulatory network, often exhibit expression patterns that are correlated over a large number of conditions. Protein associations and gene regulatory networks can be modelled from expression data. We address the question of which of several normalization methods is optimal prior to computing the correlation of the expression profiles between every pair of genes.

RESULTS

We use gene expression data from five experiments with a total of 78 hybridizations and 23 diverse conditions. Nine methods of data normalization are explored based on all possible combinations of normalization techniques according to between and within gene and experiment variation. We compare the resulting empirical distribution of gene x gene correlations with the expectations and apply cross-validation to test the performance of each method in predicting accurate functional annotation. We conclude that normalization methods based on mixed-model equations are optimal.

摘要

动机

编码具有相关功能的蛋白质的基因簇,或处于同一调控网络中的基因簇,在大量条件下通常表现出相互关联的表达模式。蛋白质关联和基因调控网络可以从表达数据中建模。在计算每对基因之间的表达谱相关性之前,我们探讨了几种归一化方法中哪种是最优的。

结果

我们使用了来自五个实验的基因表达数据,共有78次杂交和23种不同条件。根据基因间、实验内变异的归一化技术的所有可能组合,探索了九种数据归一化方法。我们将所得的基因×基因相关性的经验分布与预期进行比较,并应用交叉验证来测试每种方法在预测准确功能注释方面的性能。我们得出结论,基于混合模型方程的归一化方法是最优的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验