Suppr超能文献

利用基因组预测和RNA测序鉴定安格斯牛剩余采食量的基因网络

Identification of Gene Networks for Residual Feed Intake in Angus Cattle Using Genomic Prediction and RNA-seq.

作者信息

Weber Kristina L, Welly Bryan T, Van Eenennaam Alison L, Young Amy E, Porto-Neto Laercio R, Reverter Antonio, Rincon Gonzalo

机构信息

VMRD Genetics R&D, Zoetis Inc., Kalamazoo, MI, United States of America.

Department of Animal Science, University of California Davis, Davis, CA, United States of America.

出版信息

PLoS One. 2016 Mar 28;11(3):e0152274. doi: 10.1371/journal.pone.0152274. eCollection 2016.

Abstract

Improvement in feed conversion efficiency can improve the sustainability of beef cattle production, but genomic selection for feed efficiency affects many underlying molecular networks and physiological traits. This study describes the differences between steer progeny of two influential Angus bulls with divergent genomic predictions for residual feed intake (RFI). Eight steer progeny of each sire were phenotyped for growth and feed intake from 8 mo. of age (average BW 254 kg, with a mean difference between sire groups of 4.8 kg) until slaughter at 14-16 mo. of age (average BW 534 kg, sire group difference of 28.8 kg). Terminal samples from pituitary gland, skeletal muscle, liver, adipose, and duodenum were collected from each steer for transcriptome sequencing. Gene expression networks were derived using partial correlation and information theory (PCIT), including differentially expressed (DE) genes, tissue specific (TS) genes, transcription factors (TF), and genes associated with RFI from a genome-wide association study (GWAS). Relative to progeny of the high RFI sire, progeny of the low RFI sire had -0.56 kg/d finishing period RFI (P = 0.05), -1.08 finishing period feed conversion ratio (P = 0.01), +3.3 kg^0.75 finishing period metabolic mid-weight (MMW; P = 0.04), +28.8 kg final body weight (P = 0.01), -12.9 feed bunk visits per day (P = 0.02) with +0.60 min/visit duration (P = 0.01), and +0.0045 carcass specific gravity (weight in air/weight in air-weight in water, a predictor of carcass fat content; P = 0.03). RNA-seq identified 633 DE genes between sire groups among 17,016 expressed genes. PCIT analysis identified >115,000 significant co-expression correlations between genes and 25 TF hubs, i.e. controllers of clusters of DE, TS, and GWAS SNP genes. Pathway analysis suggests low RFI bull progeny possess heightened gut inflammation and reduced fat deposition. This multi-omics analysis shows how differences in RFI genomic breeding values can impact other traits and gene co-expression networks.

摘要

饲料转化效率的提高可以改善肉牛生产的可持续性,但针对饲料效率的基因组选择会影响许多潜在的分子网络和生理性状。本研究描述了两头具有不同基因组预测残余采食量(RFI)的有影响力的安格斯公牛的阉牛后代之间的差异。对每头公牛的八头阉牛后代从8月龄(平均体重254千克,公牛组间平均差异4.8千克)到14 - 16月龄(平均体重534千克,公牛组差异28.8千克)进行生长和采食量表型分析,直至屠宰。从每头阉牛采集垂体、骨骼肌、肝脏、脂肪和十二指肠的终末样本用于转录组测序。使用偏相关和信息理论(PCIT)推导基因表达网络,包括差异表达(DE)基因、组织特异性(TS)基因、转录因子(TF)以及来自全基因组关联研究(GWAS)的与RFI相关的基因。相对于高RFI公牛的后代,低RFI公牛的后代在育肥期RFI为 - 0.56千克/天(P = 0.05),育肥期饲料转化率为 - 1.08(P = 0.01),育肥期代谢体重(MMW)为 + 3.3千克^0.75(P = 0.04),最终体重为 + 28.8千克(P = 0.01),每天采食槽访问次数为 - 12.9次(P = 0.02),每次访问持续时间为 + 0.60分钟(P = 0.01),胴体比重为 + 0.0045(空气中重量/空气中重量 - 水中重量,胴体脂肪含量的预测指标;P = 0.03)。RNA测序在17,016个表达基因中鉴定出公牛组间633个DE基因。PCIT分析确定了基因之间超过115,000个显著的共表达相关性以及25个TF中心,即DE、TS和GWAS SNP基因簇的调控因子。通路分析表明,低RFI公牛后代具有增强的肠道炎症和减少的脂肪沉积。这种多组学分析显示了RFI基因组育种值的差异如何影响其他性状和基因共表达网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e7/4809598/0a0ebfe700c2/pone.0152274.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验