Besselink Geert A J, Vulto Paul, Lammertink Rob G H, Schlautmann Stefan, van den Berg Albert, Olthuis Wouter, Engbers Gerard H M, Schasfoort Richard B M
Biochip Group, MESA+ Research Institute, University of Twente, Enschede, The Netherlands.
Electrophoresis. 2004 Nov;25(21-22):3705-11. doi: 10.1002/elps.200406033.
The so-called address-flow principle is described: a valveless, electroosmotically driven technology used for controlling the stream profile in a laminar flow chamber. The method is explained, and a theoretical description and experimental verification are presented. Adjustment of the flow of two electroosmotically controlled guiding streams, running parallel to a central sample stream, can be used for positioning the sample stream in the dimension perpendicular to the flow direction. The results presented show that address-flow microfluidics allow easy and accurate control of sample stream position and width. The electroosmotic flow (EOF)-controlled guiding of microfluidic flows described in this paper, is a new unit operation that might aid in separation and collection in microfluidic devices. One possible application of address-flow microfluidics is guiding of capillary electrophoresis-separated components over a multisensor array, in order to perform affinity assays.
一种用于控制层流腔室中流型的无阀、电渗驱动技术。对该方法进行了解释,并给出了理论描述和实验验证。调节与中央样品流平行流动的两个电渗控制引导流的流量,可用于在垂直于流动方向的维度上定位样品流。所呈现的结果表明,地址流微流体技术能够轻松、准确地控制样品流的位置和宽度。本文所述的微流体流的电渗流(EOF)控制引导是一种新的单元操作,可能有助于微流体装置中的分离和收集。地址流微流体技术的一个可能应用是在多传感器阵列上引导毛细管电泳分离的组分,以进行亲和测定。