Suppr超能文献

微流控芯片荧光激活界面控制系统。

Microfluidic on-chip fluorescence-activated interface control system.

出版信息

Biomicrofluidics. 2010 Nov 22;4(4):44109. doi: 10.1063/1.3516036.

Abstract

A microfluidic dynamic fluorescence-activated interface control system was developed for lab-on-a-chip applications. The system consists of a straight rectangular microchannel, a fluorescence excitation source, a detection sensor, a signal conversion circuit, and a high-voltage feedback system. Aqueous NaCl as conducting fluid and aqueous glycerol as nonconducting fluid were introduced to flow side by side into the straight rectangular microchannel. Fluorescent dye was added to the aqueous NaCl to work as a signal representing the interface position. Automatic control of the liquid interface was achieved by controlling the electroosmotic effect that exists only in the conducting fluid using a high-voltage feedback system. A LABVIEW program was developed to control the output of high-voltage power supply according the actual interface position, and then the interface position is modified as the output of high-voltage power supply. At last, the interface can be moved to the desired position automatically using this feedback system. The results show that the system presented in this paper can control an arbitrary interface location in real time. The effects of viscosity ratio, flow rates, and polarity of electric field were discussed. This technique can be extended to switch the sample flow and droplets automatically.

摘要

一种用于微流控芯片的动态荧光激活界面控制系统被开发出来。该系统由一个直的矩形微通道、一个荧光激发源、一个检测传感器、一个信号转换电路和一个高压反馈系统组成。将 NaCl 水溶液和甘油水溶液引入直的矩形微通道中并排流动。将荧光染料添加到 NaCl 水溶液中,作为代表界面位置的信号。通过使用高压反馈系统控制仅存在于导电流体中的电渗效应,实现了对液体界面的自动控制。开发了一个 LABVIEW 程序,根据实际界面位置控制高压电源的输出,然后将界面位置修改为高压电源的输出。最后,使用这个反馈系统可以自动将界面移动到所需的位置。结果表明,本文提出的系统可以实时控制任意界面位置。讨论了粘度比、流速和电场极性的影响。这项技术可以扩展到自动切换样品流和液滴。

相似文献

1
Microfluidic on-chip fluorescence-activated interface control system.
Biomicrofluidics. 2010 Nov 22;4(4):44109. doi: 10.1063/1.3516036.
2
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
3
On-chip fluorescence-activated particle counting and sorting system.
Anal Chim Acta. 2008 Sep 19;626(1):97-103. doi: 10.1016/j.aca.2008.07.043. Epub 2008 Aug 3.
4
Interface motion of capillary-driven flow in rectangular microchannel.
J Colloid Interface Sci. 2004 Dec 1;280(1):155-64. doi: 10.1016/j.jcis.2004.07.017.
5
Electroosmotic flow in a water column surrounded by an immiscible liquid.
J Colloid Interface Sci. 2012 Apr 15;372(1):207-11. doi: 10.1016/j.jcis.2012.01.044. Epub 2012 Feb 1.
6
Fuel cell-powered microfluidic platform for lab-on-a-chip applications.
Lab Chip. 2012 Jan 7;12(1):74-9. doi: 10.1039/c1lc20426b. Epub 2011 Nov 10.
7
dDrop-Chip: disposable film-chip microfluidic device for real-time droplet feedback control.
Lab Chip. 2023 Mar 28;23(7):1896-1904. doi: 10.1039/d2lc01069k.
8
Two-fluid electroosmotic flow in microchannels.
J Colloid Interface Sci. 2005 Apr 1;284(1):306-14. doi: 10.1016/j.jcis.2004.10.011.
9
Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics.
Soft Matter. 2018 Feb 14;14(6):1056-1066. doi: 10.1039/c7sm01744h. Epub 2018 Jan 16.
10
Flow batteries for microfluidic networks: configuring an electroosmotic pump for nonterminal positions.
Anal Chem. 2011 Apr 1;83(7):2430-3. doi: 10.1021/ac200156s. Epub 2011 Mar 4.

引用本文的文献

1
A novel miniature dynamic microfluidic cell culture platform using electro-osmosis diode pumping.
Biomicrofluidics. 2014 Aug 11;8(4):044116. doi: 10.1063/1.4892894. eCollection 2014 Jul.
2
Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview.
Sensors (Basel). 2011;11(6):5754-68. doi: 10.3390/s110605754. Epub 2011 May 27.

本文引用的文献

1
Micro-optofluidic Lenses: A review.
Biomicrofluidics. 2010 Jul 19;4(3):031501. doi: 10.1063/1.3460392.
2
A polymeric micro-optical interface for flow monitoring in biomicrofluidics.
Biomicrofluidics. 2010 May 24;4(2):024108. doi: 10.1063/1.3435333.
3
Optoelectrofluidic field separation based on light-intensity gradients.
Biomicrofluidics. 2010 Jul 14;4(3):034102. doi: 10.1063/1.3463716.
4
Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications.
Lab Chip. 2006 Aug;6(8):1095-8. doi: 10.1039/b607834f. Epub 2006 Jun 28.
6
High-speed microfluidic differential manometer for cellular-scale hydrodynamics.
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):538-42. doi: 10.1073/pnas.0507171102. Epub 2006 Jan 5.
7
Two-fluid electroosmotic flow in microchannels.
J Colloid Interface Sci. 2005 Apr 1;284(1):306-14. doi: 10.1016/j.jcis.2004.10.011.
8
Electroosmotic guiding of sample flows in a laminar flow chamber.
Electrophoresis. 2004 Nov;25(21-22):3705-11. doi: 10.1002/elps.200406033.
9
Microscale continuous ion exchanger.
Anal Chem. 2002 Nov 1;74(21):5667-75. doi: 10.1021/ac0258397.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验