Suppr超能文献

异构模糊逻辑网络:基础与发展研究

Heterogeneous fuzzy logic networks: fundamentals and development studies.

作者信息

Pedrycz Witold

机构信息

Department of Electrical and Computer Engineering, University of Alberta, Edmonton AB T6R 2G7, Canada.

出版信息

IEEE Trans Neural Netw. 2004 Nov;15(6):1466-81. doi: 10.1109/TNN.2004.837785.

Abstract

The recent trend in the development of neurofuzzy systems has profoundly emphasized the importance of synergy between the fundamentals of fuzzy sets and neural networks. The resulting frameworks of the neurofuzzy systems took advantage of an array of learning mechanisms primarily originating within the theory of neurocomputing and the use of fuzzy models (predominantly rule-based systems) being well established in the realm of fuzzy sets. Ideally, one can anticipate that neurofuzzy systems should fully exploit the linkages between these two technologies while strongly preserving their evident identities (plasticity or learning abilities to be shared by the transparency and full interpretability of the resulting neurofuzzy constructs). Interestingly, this synergy still becomes a target yet to be satisfied. This study is an attempt to address the fundamental interpretability challenge of neurofuzzy systems. Our underlying conjecture is that the transparency of any neurofuzzy system links directly with the logic fabric of the system so the logic fundamentals of the underlying architecture become of primordial relevance. Having this in mind the development of neurofuzzy models hinges on a collection of logic driven processing units named here fuzzy (logic) neurons. These are conceptually simple logic-oriented elements that come with a well-defined semantics and plasticity. Owing to their diversity, such neurons form essential building blocks of the networks. The study revisits the existing categories of logic neurons, provides with their taxonomy, helps understand their functional features and sheds light on their behavior when being treated as computational components of any neurofuzzy architecture. The two main categories of aggregative and reference neurons are deeply rooted in the fundamental operations encountered in the technology of fuzzy sets (including logic operations, linguistic modifiers, and logic reference operations). The developed heterogeneous networks come with a well-defined semantics and high interpretability (which directly translates into the rule-based representation of the networks). As the network takes advantage of various logic neurons, this imposes an immediate requirement of structural optimization, which in this study is addressed by utilizing various mechanisms of genetic optimization (genetic algorithms). We discuss the development of the networks, elaborate on the interpretation aspects and include a number of illustrative numeric examples.

摘要

神经模糊系统发展的最新趋势深刻地强调了模糊集基础与神经网络之间协同作用的重要性。由此产生的神经模糊系统框架利用了一系列主要源自神经计算理论的学习机制,以及在模糊集领域已得到充分确立的模糊模型(主要是基于规则的系统)的应用。理想情况下,可以预期神经模糊系统应充分利用这两种技术之间的联系,同时有力地保持它们明显的特性(可塑性或学习能力,以及由此产生的神经模糊结构的透明度和完全可解释性)。有趣的是,这种协同作用仍然是一个尚未实现的目标。本研究旨在应对神经模糊系统的基本可解释性挑战。我们的基本推测是,任何神经模糊系统的透明度都直接与系统的逻辑结构相关联,因此底层架构的逻辑基础具有至关重要的意义。基于此,神经模糊模型的开发依赖于一组在此称为模糊(逻辑)神经元的逻辑驱动处理单元。这些在概念上是简单的面向逻辑的元素,具有明确的语义和可塑性。由于它们的多样性,此类神经元构成了网络的基本构建块。该研究重新审视了现有的逻辑神经元类别,给出了它们的分类法,有助于理解它们的功能特征,并阐明它们作为任何神经模糊架构的计算组件时的行为。聚合神经元和参考神经元这两个主要类别深深植根于模糊集技术中遇到的基本操作(包括逻辑运算、语言修饰词和逻辑参考运算)。所开发的异构网络具有明确的语义和高可解释性(这直接转化为网络基于规则的表示)。由于网络利用了各种逻辑神经元,这就立即产生了结构优化的要求,在本研究中通过利用各种遗传优化机制(遗传算法)来解决这一问题。我们讨论了网络的开发,详细阐述了解释方面的内容,并给出了一些说明性的数值示例。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验