Suppr超能文献

将非确定性模糊树自动机编码到递归神经网络中。

Encoding nondeterministic fuzzy tree automata into recursive neural networks.

作者信息

Gori Marco, Petrosino Alfredo

机构信息

Dipartimento di Ingegneria dell'Informazione, Università di Siena, 53100 Siena, Italy.

出版信息

IEEE Trans Neural Netw. 2004 Nov;15(6):1435-49. doi: 10.1109/TNN.2004.837585.

Abstract

Fuzzy neural systems have been a subject of great interest in the last few years, due to their abilities to facilitate the exchange of information between symbolic and subsymbolic domains. However, the models in the literature are not able to deal with structured organization of information, that is typically required by symbolic processing. In many application domains, the patterns are not only structured, but a fuzziness degree is attached to each subsymbolic pattern primitive. The purpose of this paper is to show how recursive neural networks, properly conceived for dealing with structured information, can represent nondeterministic fuzzy frontier-to-root tree automata. Whereas available prior knowledge expressed in terms of fuzzy state transition rules are injected into a recursive network, unknown rules are supposed to be filled in by data-driven learning. We also prove the stability of the encoding algorithm, extending previous results on the injection of fuzzy finite-state dynamics in high-order recurrent networks.

摘要

在过去几年中,模糊神经系统一直是人们非常感兴趣的主题,因为它们能够促进符号域和亚符号域之间的信息交换。然而,文献中的模型无法处理符号处理通常所需的信息结构化组织。在许多应用领域中,模式不仅是结构化的,而且每个亚符号模式基元都附有一个模糊度。本文的目的是展示如何为处理结构化信息而适当构思的递归神经网络能够表示非确定性模糊前沿到根树自动机。当以模糊状态转换规则表示的现有先验知识被注入到递归网络中时,未知规则应该通过数据驱动学习来填补。我们还证明了编码算法的稳定性,扩展了先前关于在高阶递归网络中注入模糊有限状态动力学的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验