Suppr超能文献

基于滑模技术的多输入多输出不确定非线性系统的RCMAC混合控制

RCMAC hybrid control for MIMO uncertain nonlinear systems using sliding-mode technology.

作者信息

Lin Chih-Min, Chen Li-Yang, Chen Chiu-Hsiung

机构信息

Department of Electrical Engineering, Yuan Ze University, Jhongli City 320, Taiwan, ROC.

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):708-20. doi: 10.1109/TNN.2007.891198.

Abstract

A hybrid control system, integrating principal and compensation controllers, is developed for multiple-input-multiple-output (MIMO) uncertain nonlinear systems. This hybrid control system is based on sliding-mode technique and uses a recurrent cerebellar model articulation controller (RCMAC) as an uncertainty observer. The principal controller containing an RCMAC uncertainty observer is the main controller, and the compensation controller is a compensator for the approximation error of the system uncertainty. In addition, in order to relax the requirement of approximation error bound, an estimation law is derived to estimate the error bound. The Taylor linearization technique is employed to increase the learning ability of RCMAC and the adaptive laws of the control system are derived based on Lyapunov stability theorem and Barbalat's lemma so that the asymptotical stability of the system can be guaranteed. Finally, the proposed design method is applied to control a biped robot. Simulation results demonstrate the effectiveness of the proposed control scheme for the MIMO uncertain nonlinear system.

摘要

针对多输入多输出(MIMO)不确定非线性系统,开发了一种集成主控制器和补偿控制器的混合控制系统。该混合控制系统基于滑模技术,并使用递归小脑模型关节控制器(RCMAC)作为不确定性观测器。包含RCMAC不确定性观测器的主控制器是主要控制器,补偿控制器是用于补偿系统不确定性逼近误差的补偿器。此外,为了放宽对逼近误差界的要求,推导了一种估计律来估计误差界。采用泰勒线性化技术提高RCMAC的学习能力,并基于李雅普诺夫稳定性定理和巴尔巴拉特引理推导了控制系统的自适应律,从而保证系统的渐近稳定性。最后,将所提出的设计方法应用于控制两足机器人。仿真结果证明了所提出的控制方案对MIMO不确定非线性系统的有效性。

相似文献

1
RCMAC hybrid control for MIMO uncertain nonlinear systems using sliding-mode technology.
IEEE Trans Neural Netw. 2007 May;18(3):708-20. doi: 10.1109/TNN.2007.891198.
2
RCMAC-based adaptive control for uncertain nonlinear systems.
IEEE Trans Syst Man Cybern B Cybern. 2007 Jun;37(3):651-66. doi: 10.1109/tsmcb.2006.888761.
3
Adaptive sliding-mode control for nonlinear systems with uncertain parameters.
IEEE Trans Syst Man Cybern B Cybern. 2008 Apr;38(2):534-9. doi: 10.1109/TSMCB.2007.910740.
4
Wavelet adaptive backstepping control for a class of nonlinear systems.
IEEE Trans Neural Netw. 2006 Sep;17(5):1175-83. doi: 10.1109/TNN.2006.878122.
5
Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller.
IEEE Trans Syst Man Cybern B Cybern. 2007 Feb;37(1):110-23. doi: 10.1109/tsmcb.2006.881905.
6
Neural-network-based nonlinear adaptive dynamical decoupling control.
IEEE Trans Neural Netw. 2007 May;18(3):921-5. doi: 10.1109/TNN.2007.891588.
7
Self-organizing CMAC control for a class of MIMO uncertain nonlinear systems.
IEEE Trans Neural Netw. 2009 Sep;20(9):1377-84. doi: 10.1109/TNN.2009.2013852. Epub 2009 Apr 24.
8
Missile guidance law design using adaptive cerebellar model articulation controller.
IEEE Trans Neural Netw. 2005 May;16(3):636-44. doi: 10.1109/TNN.2004.839358.
9
Universal neural network control of MIMO uncertain nonlinear systems.
IEEE Trans Neural Netw Learn Syst. 2012 Jul;23(7):1163-9. doi: 10.1109/TNNLS.2012.2197219.
10
Adaptive control for mimo uncertain nonlinear systems using recurrent wavelet neural network.
Int J Neural Syst. 2012 Feb;22(1):37-50. doi: 10.1142/S0129065712002992.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验