Fuentealba Rodrigo A, Farias Ginny, Scheu Jessica, Bronfman Miguel, Marzolo María Paz, Inestrosa Nibaldo C
Centro FONDAP de Regulación Celular y Patología Joaquín Luco, MIFAB, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
Brain Res Brain Res Rev. 2004 Dec;47(1-3):275-89. doi: 10.1016/j.brainresrev.2004.07.018.
Alzheimer's disease (AD) is a neurodegenerative disorder with progressive dementia accompanied by two main structural changes in the brain: intracellular protein deposits termed neurofibrillary tangles (NFT) and extracellular amyloid protein deposits surrounded by dystrophic neurites that constitutes the senile plaques. Currently, it is widely accepted that amyloid beta-peptide (A beta) metabolism disbalance is crucial for AD progression. A beta deposition may be enhanced by molecular chaperones, including metals like copper and proteins like acetylcholinesterase (AChE). At the neuronal level, several AD-related proteins interact with transducers of the Wnt/beta-catenin signaling pathway, including beta-catenin and glycogen synthase kinase 3 beta (GSK-3 beta) and both in vitro and in vivo studies suggest that Wnt/beta-catenin signaling is a target for A beta toxicity. Accordingly, activation of this signaling by lithium or Wnt ligands in AD-experimental animal models or in primary hippocampal neurons attenuate A beta neurotoxicity by recovering beta-catenin levels and Wnt-target gene expression of survival genes such as bcl-2. On the other hand, peroxisomal proliferator-activated receptor gamma (PPAR gamma) and muscarinic acetylcholine receptor (mAChR) agonists also activate Wnt/beta-catenin signaling and they have neuroprotective effects on hippocampal neurons. Our studies are consistent with the idea that a sustained loss of function of Wnt signaling components would trigger a series of events, determining the onset and development of AD and that modulation of this pathway through the activation of cross-talking signaling cascades should be considered as a possible therapeutic strategy for AD treatment.
阿尔茨海默病(AD)是一种神经退行性疾病,伴有进行性痴呆,同时大脑会出现两种主要结构变化:细胞内蛋白质沉积物,称为神经原纤维缠结(NFT),以及细胞外淀粉样蛋白沉积物,其周围环绕着营养不良性神经突,构成老年斑。目前,人们普遍认为淀粉样β肽(Aβ)代谢失衡对AD的进展至关重要。分子伴侣,包括铜等金属和乙酰胆碱酯酶(AChE)等蛋白质,可能会增强Aβ沉积。在神经元水平上,几种与AD相关的蛋白质与Wnt/β-连环蛋白信号通路的转导子相互作用,包括β-连环蛋白和糖原合酶激酶3β(GSK-3β),体外和体内研究均表明Wnt/β-连环蛋白信号是Aβ毒性的靶点。因此,在AD实验动物模型或原代海马神经元中,锂或Wnt配体激活该信号可通过恢复β-连环蛋白水平和生存基因如bcl-2的Wnt靶基因表达来减轻Aβ神经毒性。另一方面,过氧化物酶体增殖物激活受体γ(PPARγ)和毒蕈碱型乙酰胆碱受体(mAChR)激动剂也激活Wnt/β-连环蛋白信号,它们对海马神经元具有神经保护作用。我们的研究与以下观点一致,即Wnt信号成分功能的持续丧失会引发一系列事件,决定AD的发病和发展,并且通过激活相互作用的信号级联来调节该通路应被视为AD治疗的一种可能策略。