Suppr超能文献

糖原合成酶激酶3(GSK3)的活性调节海马体中生物钟基因表达和突触可塑性的节律。

GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity.

作者信息

Besing Rachel C, Rogers Courtney O, Paul Jodi R, Hablitz Lauren M, Johnson Russell L, McMahon Lori L, Gamble Karen L

机构信息

Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.

出版信息

Hippocampus. 2017 Aug;27(8):890-898. doi: 10.1002/hipo.22739. Epub 2017 May 27.

Abstract

Hippocampal rhythms in clock gene expression, enzymatic activity, and long-term potentiation (LTP) are thought to underlie day-night differences in memory acquisition and recall. Glycogen synthase kinase 3-beta (GSK3β) is a known regulator of hippocampal function, and inhibitory phosphorylation of GSK3β exhibits region-specific differences over the light-dark cycle. Here, we sought to determine whether phosphorylation of both GSK3α and GSK3β isoforms has an endogenous circadian rhythm in specific areas of the hippocampus and whether chronic inhibition or activation alters the molecular clock and hippocampal plasticity (LTP). Results indicated a significant endogenous circadian rhythm in phosphorylation of GSK3β, but not GSK3α, in hippocampal CA1 extracts from mice housed in constant darkness for at least 2 weeks. To examine the importance of this rhythm, genetic and pharmacological strategies were used to disrupt the GSK3 activity rhythm by chronically activating or inhibiting GSK3. Chronic activation of both GSK3 isoforms in transgenic mice (GSK3-KI mice) diminished rhythmic BMAL1 expression. On the other hand, chronic treatment with a GSK3 inhibitor significantly shortened the molecular clock period of organotypic hippocampal PER2::LUC cultures. While WT mice exhibited higher LTP magnitude at night compared to day, the day-night difference in LTP magnitude remained with greater magnitude at both times of day in mice with chronic GSK3 activity. On the other hand, pharmacological GSK3 inhibition impaired day-night differences in LTP by blocking LTP selectively at night. Taken together, these results support the model that circadian rhythmicity of hippocampal GSK3β activation state regulates day/night differences in molecular clock periodicity and a major form of synaptic plasticity (LTP).

摘要

时钟基因表达、酶活性和长时程增强(LTP)中的海马节律被认为是记忆获取和回忆中昼夜差异的基础。糖原合酶激酶3-β(GSK3β)是已知的海马功能调节因子,GSK3β的抑制性磷酸化在明暗周期中表现出区域特异性差异。在这里,我们试图确定GSK3α和GSK3β亚型的磷酸化在海马特定区域是否具有内源性昼夜节律,以及慢性抑制或激活是否会改变分子时钟和海马可塑性(LTP)。结果表明,在至少2周处于持续黑暗环境中的小鼠海马CA1提取物中,GSK3β的磷酸化存在显著的内源性昼夜节律,而GSK3α则没有。为了研究这种节律的重要性,我们采用遗传和药理学策略,通过长期激活或抑制GSK3来破坏GSK3的活性节律。在转基因小鼠(GSK3-KI小鼠)中,两种GSK3亚型的慢性激活均降低了BMAL1的节律性表达。另一方面,用GSK3抑制剂进行慢性处理显著缩短了海马器官型PER2::LUC培养物的分子时钟周期。野生型小鼠夜间的LTP幅度高于白天,而在GSK3活性慢性改变的小鼠中,LTP幅度的昼夜差异在一天中的两个时间段都更大。另一方面,药理学上的GSK3抑制通过在夜间选择性阻断LTP而损害了LTP的昼夜差异。综上所述,这些结果支持了这样一种模型,即海马GSK3β激活状态的昼夜节律调节分子时钟周期的昼夜差异以及一种主要的突触可塑性形式(LTP)。

相似文献

1
GSK3 activity regulates rhythms in hippocampal clock gene expression and synaptic plasticity.
Hippocampus. 2017 Aug;27(8):890-898. doi: 10.1002/hipo.22739. Epub 2017 May 27.
2
Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.
J Biol Rhythms. 2015 Apr;30(2):155-60. doi: 10.1177/0748730415573167. Epub 2015 Feb 27.
4
Glycogen synthase kinase 3 regulates photic signaling in the suprachiasmatic nucleus.
Eur J Neurosci. 2017 Apr;45(8):1102-1110. doi: 10.1111/ejn.13549. Epub 2017 Mar 21.
5
8
Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
eNeuro. 2017 Aug 18;4(4). doi: 10.1523/ENEURO.0160-17.2017. eCollection 2017 Jul-Aug.
9
IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus.
J Biol Rhythms. 2015 Oct;30(5):396-407. doi: 10.1177/0748730415593377. Epub 2015 Jul 6.
10
Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency.
J Pineal Res. 2019 Apr;66(3):e12553. doi: 10.1111/jpi.12553. Epub 2019 Feb 14.

引用本文的文献

2
Axin-binding domain of glycogen synthase kinase 3β facilitates functional interactions with voltage-gated Na+ channel Na1.6.
J Biol Chem. 2025 Feb;301(2):108162. doi: 10.1016/j.jbc.2025.108162. Epub 2025 Jan 8.
4
Function of GSK‑3 signaling in spinal cord injury (Review).
Exp Ther Med. 2023 Oct 3;26(5):541. doi: 10.3892/etm.2023.12240. eCollection 2023 Nov.
5
Reanalysis of primate brain circadian transcriptomics reveals connectivity-related oscillations.
iScience. 2023 Sep 1;26(10):107810. doi: 10.1016/j.isci.2023.107810. eCollection 2023 Oct 20.
6
Circadian modulation by time-restricted feeding rescues brain pathology and improves memory in mouse models of Alzheimer's disease.
Cell Metab. 2023 Oct 3;35(10):1704-1721.e6. doi: 10.1016/j.cmet.2023.07.014. Epub 2023 Aug 21.
7
Circadian regulation in aging: Implications for spaceflight and life on earth.
Aging Cell. 2023 Sep;22(9):e13935. doi: 10.1111/acel.13935. Epub 2023 Jul 26.
8
Control of circadian rhythm on cortical excitability and synaptic plasticity.
Front Neural Circuits. 2023 Mar 30;17:1099598. doi: 10.3389/fncir.2023.1099598. eCollection 2023.
9
Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling.
Cell Rep. 2023 Apr 25;42(4):112375. doi: 10.1016/j.celrep.2023.112375. Epub 2023 Apr 11.
10
Circadian rhythms as modulators of brain health during development and throughout aging.
Front Neural Circuits. 2023 Jan 19;16:1059229. doi: 10.3389/fncir.2022.1059229. eCollection 2022.

本文引用的文献

1
Modulation of learning and memory by the targeted deletion of the circadian clock gene Bmal1 in forebrain circuits.
Behav Brain Res. 2016 Jul 15;308:222-35. doi: 10.1016/j.bbr.2016.04.027. Epub 2016 May 4.
2
Lithium effects on circadian rhythms in fibroblasts and suprachiasmatic nucleus slices from Cry knockout mice.
Neurosci Lett. 2016 Apr 21;619:49-53. doi: 10.1016/j.neulet.2016.02.030. Epub 2016 Feb 27.
3
Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.
J Biol Rhythms. 2015 Apr;30(2):155-60. doi: 10.1177/0748730415573167. Epub 2015 Feb 27.
4
5
Behavioral changes and dopaminergic dysregulation in mice lacking the nuclear receptor Rev-erbα.
Mol Endocrinol. 2014 Apr;28(4):490-8. doi: 10.1210/me.2013-1351. Epub 2014 Feb 19.
6
Chronopharmacology: new insights and therapeutic implications.
Annu Rev Pharmacol Toxicol. 2014;54:339-61. doi: 10.1146/annurev-pharmtox-011613-135923. Epub 2013 Oct 16.
7
Glycogen synthase kinase-3 inhibitors reverse deficits in long-term potentiation and cognition in fragile X mice.
Biol Psychiatry. 2014 Feb 1;75(3):198-206. doi: 10.1016/j.biopsych.2013.08.003. Epub 2013 Sep 13.
10
Circadian and wakefulness-sleep modulation of cognition in humans.
Front Mol Neurosci. 2012 Apr 18;5:50. doi: 10.3389/fnmol.2012.00050. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验