Besing Rachel C, Rogers Courtney O, Paul Jodi R, Hablitz Lauren M, Johnson Russell L, McMahon Lori L, Gamble Karen L
Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.
Hippocampus. 2017 Aug;27(8):890-898. doi: 10.1002/hipo.22739. Epub 2017 May 27.
Hippocampal rhythms in clock gene expression, enzymatic activity, and long-term potentiation (LTP) are thought to underlie day-night differences in memory acquisition and recall. Glycogen synthase kinase 3-beta (GSK3β) is a known regulator of hippocampal function, and inhibitory phosphorylation of GSK3β exhibits region-specific differences over the light-dark cycle. Here, we sought to determine whether phosphorylation of both GSK3α and GSK3β isoforms has an endogenous circadian rhythm in specific areas of the hippocampus and whether chronic inhibition or activation alters the molecular clock and hippocampal plasticity (LTP). Results indicated a significant endogenous circadian rhythm in phosphorylation of GSK3β, but not GSK3α, in hippocampal CA1 extracts from mice housed in constant darkness for at least 2 weeks. To examine the importance of this rhythm, genetic and pharmacological strategies were used to disrupt the GSK3 activity rhythm by chronically activating or inhibiting GSK3. Chronic activation of both GSK3 isoforms in transgenic mice (GSK3-KI mice) diminished rhythmic BMAL1 expression. On the other hand, chronic treatment with a GSK3 inhibitor significantly shortened the molecular clock period of organotypic hippocampal PER2::LUC cultures. While WT mice exhibited higher LTP magnitude at night compared to day, the day-night difference in LTP magnitude remained with greater magnitude at both times of day in mice with chronic GSK3 activity. On the other hand, pharmacological GSK3 inhibition impaired day-night differences in LTP by blocking LTP selectively at night. Taken together, these results support the model that circadian rhythmicity of hippocampal GSK3β activation state regulates day/night differences in molecular clock periodicity and a major form of synaptic plasticity (LTP).
时钟基因表达、酶活性和长时程增强(LTP)中的海马节律被认为是记忆获取和回忆中昼夜差异的基础。糖原合酶激酶3-β(GSK3β)是已知的海马功能调节因子,GSK3β的抑制性磷酸化在明暗周期中表现出区域特异性差异。在这里,我们试图确定GSK3α和GSK3β亚型的磷酸化在海马特定区域是否具有内源性昼夜节律,以及慢性抑制或激活是否会改变分子时钟和海马可塑性(LTP)。结果表明,在至少2周处于持续黑暗环境中的小鼠海马CA1提取物中,GSK3β的磷酸化存在显著的内源性昼夜节律,而GSK3α则没有。为了研究这种节律的重要性,我们采用遗传和药理学策略,通过长期激活或抑制GSK3来破坏GSK3的活性节律。在转基因小鼠(GSK3-KI小鼠)中,两种GSK3亚型的慢性激活均降低了BMAL1的节律性表达。另一方面,用GSK3抑制剂进行慢性处理显著缩短了海马器官型PER2::LUC培养物的分子时钟周期。野生型小鼠夜间的LTP幅度高于白天,而在GSK3活性慢性改变的小鼠中,LTP幅度的昼夜差异在一天中的两个时间段都更大。另一方面,药理学上的GSK3抑制通过在夜间选择性阻断LTP而损害了LTP的昼夜差异。综上所述,这些结果支持了这样一种模型,即海马GSK3β激活状态的昼夜节律调节分子时钟周期的昼夜差异以及一种主要的突触可塑性形式(LTP)。