Netzer Roman, Peters-Wendisch Petra, Eggeling Lothar, Sahm Hermann
Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany.
Appl Environ Microbiol. 2004 Dec;70(12):7148-55. doi: 10.1128/AEM.70.12.7148-7155.2004.
Despite its key position in central metabolism, L-serine does not support the growth of Corynebacterium glutamicum. Nevertheless, during growth on glucose, L-serine is consumed at rates up to 19.4 +/- 4.0 nmol min(-1) (mg [dry weight])(-1), resulting in the complete consumption of 100 mM L-serine in the presence of 100 mM glucose and an increased growth yield of about 20%. Use of 13C-labeled L-serine and analysis of cellularly derived metabolites by nuclear magnetic resonance spectroscopy revealed that the carbon skeleton of L-serine is mainly converted to pyruvate-derived metabolites such as L-alanine. The sdaA gene was identified in the genome of C. glutamicum, and overexpression of sdaA resulted in (i) functional L-serine dehydratase (L-SerDH) activity, and therefore conversion of L-serine to pyruvate, and (ii) growth of the recombinant strain on L-serine as the single substrate. In contrast, deletion of sdaA decreased the L-serine cometabolism rate with glucose by 47% but still resulted in degradation of L-serine to pyruvate. Cystathionine beta-lyase was additionally found to convert L-serine to pyruvate, and the respective metC gene was induced 2.4-fold under high internal L-serine concentrations. Upon sdaA overexpression, the growth rate on glucose is reduced 36% from that of the wild type, illustrating that even with glucose as a single substrate, intracellular L-serine conversion to pyruvate might occur, although probably the weak affinity of L-SerDH (apparent Km, 11 mM) prevents substantial L-serine degradation.
尽管L-丝氨酸在中心代谢中占据关键地位,但它并不能支持谷氨酸棒杆菌的生长。然而,在以葡萄糖为碳源生长时,L-丝氨酸的消耗速率高达19.4±4.0 nmol min⁻¹(mg[干重])⁻¹,在100 mM葡萄糖存在的情况下,100 mM的L-丝氨酸会被完全消耗,且生长产量提高约20%。使用¹³C标记的L-丝氨酸,并通过核磁共振光谱分析细胞衍生代谢物,结果表明L-丝氨酸的碳骨架主要转化为丙酮酸衍生的代谢物,如L-丙氨酸。在谷氨酸棒杆菌的基因组中鉴定出了sdaA基因,sdaA基因的过表达导致:(i)具有功能性的L-丝氨酸脱水酶(L-SerDH)活性,从而使L-丝氨酸转化为丙酮酸;(ii)重组菌株能够以L-丝氨酸作为唯一底物生长。相反,sdaA基因的缺失使L-丝氨酸与葡萄糖的共代谢速率降低了47%,但L-丝氨酸仍会降解为丙酮酸。此外,还发现胱硫醚β-裂解酶可将L-丝氨酸转化为丙酮酸,在细胞内L-丝氨酸浓度较高时,相应的metC基因被诱导表达,表达量增加2.4倍。sdaA基因过表达后,重组菌株在葡萄糖上的生长速率比野生型降低了36%,这表明即使以葡萄糖作为唯一底物,细胞内也可能发生L-丝氨酸向丙酮酸的转化,尽管L-丝氨酸脱水酶的亲和力较弱(表观Km为11 mM),可能会阻止L-丝氨酸的大量降解。