Suppr超能文献

非生长底物的共代谢:谷氨酸棒杆菌对L-丝氨酸的利用

Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum.

作者信息

Netzer Roman, Peters-Wendisch Petra, Eggeling Lothar, Sahm Hermann

机构信息

Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Jülich, Germany.

出版信息

Appl Environ Microbiol. 2004 Dec;70(12):7148-55. doi: 10.1128/AEM.70.12.7148-7155.2004.

Abstract

Despite its key position in central metabolism, L-serine does not support the growth of Corynebacterium glutamicum. Nevertheless, during growth on glucose, L-serine is consumed at rates up to 19.4 +/- 4.0 nmol min(-1) (mg [dry weight])(-1), resulting in the complete consumption of 100 mM L-serine in the presence of 100 mM glucose and an increased growth yield of about 20%. Use of 13C-labeled L-serine and analysis of cellularly derived metabolites by nuclear magnetic resonance spectroscopy revealed that the carbon skeleton of L-serine is mainly converted to pyruvate-derived metabolites such as L-alanine. The sdaA gene was identified in the genome of C. glutamicum, and overexpression of sdaA resulted in (i) functional L-serine dehydratase (L-SerDH) activity, and therefore conversion of L-serine to pyruvate, and (ii) growth of the recombinant strain on L-serine as the single substrate. In contrast, deletion of sdaA decreased the L-serine cometabolism rate with glucose by 47% but still resulted in degradation of L-serine to pyruvate. Cystathionine beta-lyase was additionally found to convert L-serine to pyruvate, and the respective metC gene was induced 2.4-fold under high internal L-serine concentrations. Upon sdaA overexpression, the growth rate on glucose is reduced 36% from that of the wild type, illustrating that even with glucose as a single substrate, intracellular L-serine conversion to pyruvate might occur, although probably the weak affinity of L-SerDH (apparent Km, 11 mM) prevents substantial L-serine degradation.

摘要

尽管L-丝氨酸在中心代谢中占据关键地位,但它并不能支持谷氨酸棒杆菌的生长。然而,在以葡萄糖为碳源生长时,L-丝氨酸的消耗速率高达19.4±4.0 nmol min⁻¹(mg[干重])⁻¹,在100 mM葡萄糖存在的情况下,100 mM的L-丝氨酸会被完全消耗,且生长产量提高约20%。使用¹³C标记的L-丝氨酸,并通过核磁共振光谱分析细胞衍生代谢物,结果表明L-丝氨酸的碳骨架主要转化为丙酮酸衍生的代谢物,如L-丙氨酸。在谷氨酸棒杆菌的基因组中鉴定出了sdaA基因,sdaA基因的过表达导致:(i)具有功能性的L-丝氨酸脱水酶(L-SerDH)活性,从而使L-丝氨酸转化为丙酮酸;(ii)重组菌株能够以L-丝氨酸作为唯一底物生长。相反,sdaA基因的缺失使L-丝氨酸与葡萄糖的共代谢速率降低了47%,但L-丝氨酸仍会降解为丙酮酸。此外,还发现胱硫醚β-裂解酶可将L-丝氨酸转化为丙酮酸,在细胞内L-丝氨酸浓度较高时,相应的metC基因被诱导表达,表达量增加2.4倍。sdaA基因过表达后,重组菌株在葡萄糖上的生长速率比野生型降低了36%,这表明即使以葡萄糖作为唯一底物,细胞内也可能发生L-丝氨酸向丙酮酸的转化,尽管L-丝氨酸脱水酶的亲和力较弱(表观Km为11 mM),可能会阻止L-丝氨酸的大量降解。

相似文献

1
Cometabolism of a nongrowth substrate: L-serine utilization by Corynebacterium glutamicum.
Appl Environ Microbiol. 2004 Dec;70(12):7148-55. doi: 10.1128/AEM.70.12.7148-7155.2004.
2
Metabolic engineering of Corynebacterium glutamicum for L-serine production.
Appl Environ Microbiol. 2005 Nov;71(11):7139-44. doi: 10.1128/AEM.71.11.7139-7144.2005.
5
Rewiring the Central Metabolic Pathway for High-Yield l-Serine Production in Corynebacterium glutamicum by Using Glucose.
Biotechnol J. 2019 Jun;14(6):e1800497. doi: 10.1002/biot.201800497. Epub 2019 May 20.
6
Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2007 Sep;76(3):615-23. doi: 10.1007/s00253-007-0904-1. Epub 2007 Mar 2.
7
Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production.
Sci China Life Sci. 2012 Apr;55(4):283-90. doi: 10.1007/s11427-012-4304-0. Epub 2012 May 9.
8
Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Arch Microbiol. 2004 Nov;182(5):354-63. doi: 10.1007/s00203-004-0710-4. Epub 2004 Sep 15.
10
Ethanol catabolism in Corynebacterium glutamicum.
J Mol Microbiol Biotechnol. 2008;15(4):222-33. doi: 10.1159/000107370. Epub 2007 Aug 13.

引用本文的文献

1
Quantitative Physiology and Proteome Adaptations of Bifidobacterium breve NRBB57 at Near-Zero Growth Rates.
Microbiol Spectr. 2023 Jun 15;11(3):e0256822. doi: 10.1128/spectrum.02568-22. Epub 2023 May 15.
2
l-Serine Biosensor-Controlled Fermentative Production of l-Tryptophan Derivatives by .
Biology (Basel). 2022 May 13;11(5):744. doi: 10.3390/biology11050744.
3
Metabolic Engineering of for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid.
Microorganisms. 2022 Mar 29;10(4):730. doi: 10.3390/microorganisms10040730.
4
The Serine Biosynthesis of WLY78 Is Regulated by the T-Box Riboswitch.
Int J Mol Sci. 2021 Mar 16;22(6):3033. doi: 10.3390/ijms22063033.
5
The serine transporter SdaC prevents cell lysis upon glucose depletion in Escherichia coli.
Microbiologyopen. 2020 Feb;9(2):e960. doi: 10.1002/mbo3.960. Epub 2019 Nov 3.
6
Efficient Production of the Dicarboxylic Acid Glutarate by via a Novel Synthetic Pathway.
Front Microbiol. 2018 Oct 30;9:2589. doi: 10.3389/fmicb.2018.02589. eCollection 2018.
7
Physiological Response of to Increasingly Nutrient-Rich Growth Conditions.
Front Microbiol. 2018 Aug 29;9:2058. doi: 10.3389/fmicb.2018.02058. eCollection 2018.
8
Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass.
Microb Cell Fact. 2015 Nov 20;14:185. doi: 10.1186/s12934-015-0369-3.
10
Construction of an L-serine producing Escherichia coli via metabolic engineering.
J Ind Microbiol Biotechnol. 2014 Sep;41(9):1443-50. doi: 10.1007/s10295-014-1476-6. Epub 2014 Jul 6.

本文引用的文献

1
Pyruvate carboxylase as an anaplerotic enzyme in .
Microbiology (Reading). 1997 Apr;143(4):1095-1103. doi: 10.1099/00221287-143-4-1095.
2
Response of the central metabolism of Corynebacterium glutamicum to different flux burdens.
Biotechnol Bioeng. 1997 Oct 20;56(2):168-80. doi: 10.1002/(SICI)1097-0290(19971020)56:2<168::AID-BIT6>3.0.CO;2-N.
3
Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing.
Biotechnol Bioeng. 1996 Jan 20;49(2):111-29. doi: 10.1002/(SICI)1097-0290(19960120)49:2<111::AID-BIT1>3.0.CO;2-T.
5
CYSTATHIONINE CLEAVAGE ENZYMES OF NEUROSPORA.
J Biol Chem. 1964 Jul;239:2212-9.
6
NUTRITIONAL AND REGULATORY ASPECTS OF SERINE METABOLISM IN ESCHERICHIA COLI.
J Bacteriol. 1964 Sep;88(3):611-9. doi: 10.1128/jb.88.3.611-619.1964.
7
SERINE DEAMINATION BY THE B PROTEIN OF ESCHERICHIA COLI TRYPTOPHAN SYNTHETASE.
Proc Natl Acad Sci U S A. 1964 Mar;51(3):390-7. doi: 10.1073/pnas.51.3.390.
8
Genome-wide expression analysis in Corynebacterium glutamicum using DNA microarrays.
J Biotechnol. 2003 Sep 4;104(1-3):273-85. doi: 10.1016/s0168-1656(03)00147-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验