Peters-Wendisch Petra, Stolz Michael, Etterich Helga, Kennerknecht Nicole, Sahm Hermann, Eggeling Lothar
Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
Appl Environ Microbiol. 2005 Nov;71(11):7139-44. doi: 10.1128/AEM.71.11.7139-7144.2005.
Although L-serine proceeds in just three steps from the glycolytic intermediate 3-phosphoglycerate, and as much as 8% of the carbon assimilated from glucose is directed via L-serine formation, previous attempts to obtain a strain producing L-serine from glucose have not been successful. We functionally identified the genes serC and serB from Corynebacterium glutamicum, coding for phosphoserine aminotransferase and phosphoserine phosphatase, respectively. The overexpression of these genes, together with the third biosynthetic serA gene, serA(delta197), encoding an L-serine-insensitive 3-phosphoglycerate dehydrogenase, yielded only traces of L-serine, as did the overexpression of these genes in a strain with the L-serine dehydratase gene sdaA deleted. However, reduced expression of the serine hydroxymethyltransferase gene glyA, in combination with the overexpression of serA(delta197), serC, and serB, resulted in a transient accumulation of up to 16 mM L-serine in the culture medium. When sdaA was also deleted, the resulting strain, C. glutamicum delta sdaA::pK18mobglyA'(pEC-T18mob2serA(delta197)CB), accumulated up to 86 mM L-serine with a maximal specific productivity of 1.2 mmol h(-1) g (dry weight)(-1). This illustrates a high rate of L-serine formation and also utilization in the C. glutamicum wild type. Therefore, metabolic engineering of L-serine production from glucose can be achieved only by addressing the apparent key position of this amino acid in the central metabolism.
尽管L-丝氨酸仅从糖酵解中间产物3-磷酸甘油酸经过三步反应生成,并且从葡萄糖同化的碳中多达8%通过L-丝氨酸的形成途径进行,但之前尝试从葡萄糖生产L-丝氨酸的菌株均未成功。我们从谷氨酸棒杆菌中功能性地鉴定出了serC和serB基因,它们分别编码磷酸丝氨酸转氨酶和磷酸丝氨酸磷酸酶。这些基因与第三个生物合成serA基因serA(δ197)(编码对L-丝氨酸不敏感的3-磷酸甘油酸脱氢酶)一起过表达时,仅产生痕量的L-丝氨酸,在缺失L-丝氨酸脱水酶基因sdaA的菌株中过表达这些基因时也是如此。然而,丝氨酸羟甲基转移酶基因glyA的表达降低,与serA(δ197)、serC和serB的过表达相结合,导致培养基中L-丝氨酸瞬时积累高达16 mM。当sdaA也被缺失时,所得菌株谷氨酸棒杆菌ΔsdaA::pK18mobglyA'(pEC-T18mob2serA(δ197)CB)积累了高达86 mM的L-丝氨酸,最大比生产率为1.2 mmol h(-1) g(干重)(-1)。这说明了谷氨酸棒杆菌野生型中L-丝氨酸的高生成率和利用率。因此,只有通过解决该氨基酸在中心代谢中的明显关键位置,才能实现从葡萄糖生产L-丝氨酸的代谢工程。