Suppr超能文献

A comparison of acetyl- and methoxycarbonylnitrenes by computational methods and a laser flash photolysis study of benzoylnitrene.

作者信息

Liu Jin, Mandel Sarah, Hadad Christopher M, Platz Matthew S

机构信息

Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.

出版信息

J Org Chem. 2004 Dec 10;69(25):8583-93. doi: 10.1021/jo048433y.

Abstract

Density functional theory (DFT), CCSD(T), and CBS-QB3 calculations were performed to understand the chemical and reactivity differences between acetylnitrene (CH(3)C(=O)N) and methoxycarbonylnitrene (CH(3)OC(=O)N) and related compounds. CBS-QB3 theory alone correctly predicts that acetylnitrene has a singlet ground state. We agree with previous studies that there is a substantial N-O interaction in singlet acetylnitrene and find a corresponding but weaker interaction in methoxycarbonylnitrene. Methoxycarbonylnitrene has a triplet ground state because the oxygen atom stabilizes the triplet state of the carbonyl nitrene more than the corresponding singlet state. The oxygen atom also stabilizes the transition state of the Curtius rearrangement and accelerates the isomerization of methoxycarbonylnitrene relative to acetylnitrene. Acetyl azide is calculated to decompose by concerted migration of the methyl group along with nitrogen extrusion; the free energy of activation for this concerted process is only 27 kcal/mol, and a free nitrene is not produced upon pyrolysis of acetyl azide. Methoxycarbonyl azide, on the other hand, does have a preference for stepwise Curtius rearrangement via the free nitrene. The bimolecular reactions of acetylnitrene and methoxycarbonylnitrene with propane, ethylene, and methanol were calculated and found to have enthalpic barriers that are near zero and free energy barriers that are controlled by entropy. These predictions were tested by laser flash photolysis studies of benzoyl azide. The absolute bimolecular reaction rate constants of benzoylnitrene were measured with the following substrates: acetonitrile (k = 3.4 x 10(5) M(-1) (s-1)), methanol (6.5 x 10(6) M(-1) s(-1)), water (4.0 x 10(6) M(-1) s(-1)), cyclohexane (1.8 x 10(5) M(-1) s(-1)), and several representative alkenes. The activation energy for the reaction of benzoylnitrene with 1-hexene is -0.06 +/- 0.001 kcal/mol. The activation energy for the decay of benzoylnitrene in pentane is -3.20 +/- 0.02 kcal/mol. The latter results indicate that the rates of reactions of benzoylnitrene are controlled by entropic factors in a manner reminiscent of singlet carbene processes.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验