Zamboni Nicola, Sauer Uwe
Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland.
Genome Biol. 2004;5(12):R99. doi: 10.1186/gb-2004-5-12-r99. Epub 2004 Nov 16.
We introduce a conceptually novel method for intracellular fluxome profiling from unsupervised statistical analysis of stable isotope labeling. Without a priori knowledge on the metabolic system, we identified characteristic flux fingerprints in 10 Bacillus subtilis mutants from 132 2H and 13C tracer experiments. Beyond variant discrimination, independent component analysis automatically mapped several fingerprints to their metabolic determinants. The approach is flexible and paves the way to large-scale fluxome profiling of any biological system and condition.
我们从稳定同位素标记的无监督统计分析中引入了一种概念上新颖的细胞内通量组分析方法。在没有关于代谢系统的先验知识的情况下,我们从132个2H和13C示踪实验中识别出了10个枯草芽孢杆菌突变体中的特征通量指纹。除了变异体鉴别之外,独立成分分析还自动将几个指纹映射到它们的代谢决定因素上。该方法具有灵活性,为任何生物系统和条件的大规模通量组分析铺平了道路。