Suppr超能文献

大规模13C通量分析揭示了酵母代谢网络对无效突变的稳健性机制原理。

Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast.

作者信息

Blank Lars M, Kuepfer Lars, Sauer Uwe

机构信息

Institute of Biotechnology, ETH Zürich, 8093 Zürich, Switzerland.

出版信息

Genome Biol. 2005;6(6):R49. doi: 10.1186/gb-2005-6-6-r49. Epub 2005 May 17.

Abstract

BACKGROUND

Quantification of intracellular metabolite fluxes by 13C-tracer experiments is maturing into a routine higher-throughput analysis. The question now arises as to which mutants should be analyzed. Here we identify key experiments in a systems biology approach with a genome-scale model of Saccharomyces cerevisiae metabolism, thereby reducing the workload for experimental network analyses and functional genomics.

RESULTS

Genome-scale 13C flux analysis revealed that about half of the 745 biochemical reactions were active during growth on glucose, but that alternative pathways exist for only 51 gene-encoded reactions with significant flux. These flexible reactions identified in silico are key targets for experimental flux analysis, and we present the first large-scale metabolic flux data for yeast, covering half of these mutants during growth on glucose. The metabolic lesions were often counteracted by flux rerouting, but knockout of cofactor-dependent reactions, as in the adh1, ald6, cox5A, fum1, mdh1, pda1, and zwf1 mutations, caused flux responses in more distant parts of the network. By integrating computational analyses, flux data, and physiological phenotypes of all mutants in active reactions, we quantified the relative importance of 'genetic buffering' through alternative pathways and network redundancy through duplicate genes for genetic robustness of the network.

CONCLUSIONS

The apparent dispensability of knockout mutants with metabolic function is explained by gene inactivity under a particular condition in about half of the cases. For the remaining 207 viable mutants of active reactions, network redundancy through duplicate genes was the major (75%) and alternative pathways the minor (25%) molecular mechanism of genetic network robustness in S. cerevisiae.

摘要

背景

通过13C示踪实验对细胞内代谢物通量进行定量分析正在发展成为一种常规的高通量分析方法。现在出现的问题是应该分析哪些突变体。在这里,我们通过酿酒酵母代谢的基因组规模模型,以系统生物学方法确定关键实验,从而减少实验网络分析和功能基因组学的工作量。

结果

基因组规模的13C通量分析表明,在葡萄糖上生长期间,745个生化反应中约有一半是活跃的,但只有51个具有显著通量的基因编码反应存在替代途径。在计算机模拟中确定的这些灵活反应是实验通量分析的关键目标,我们展示了酵母的首个大规模代谢通量数据,涵盖了这些突变体在葡萄糖上生长期间的一半。代谢损伤通常通过通量重新路由来抵消,但敲除依赖辅因子的反应,如adh1、ald6、cox5A、fum1、mdh1、pda1和zwf1突变,会在网络的更远处引起通量反应。通过整合所有活跃反应中突变体的计算分析、通量数据和生理表型,我们量化了通过替代途径的“遗传缓冲”和通过重复基因的网络冗余对网络遗传稳健性的相对重要性。

结论

在大约一半的情况下,代谢功能敲除突变体的明显可 dispensability 是由特定条件下的基因不活性解释的。对于活跃反应中其余207个可行的突变体,通过重复基因的网络冗余是酿酒酵母遗传网络稳健性的主要(75%)分子机制,而替代途径是次要(25%)分子机制。 (注:原文中“dispensability”可能有误,推测可能是“ dispensability”,意为“可省性”,但不影响整体理解。)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4923/1175969/bf54d690a3f5/gb-2005-6-6-r49-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验