Suppr超能文献

对雄性拟暗果蝇基因表达的加性和反式作用效应

Additivity and trans-acting effects on gene expression in male Drosophila simulans.

作者信息

Wayne M L, Pan Y-J, Nuzhdin S V, McIntyre L M

机构信息

Department of Zoology, University of Florida, Gainesville, Florida 32611, USA.

出版信息

Genetics. 2004 Nov;168(3):1413-20. doi: 10.1534/genetics.104.030973.

Abstract

Understanding how genetic variation is maintained begins with a comprehensive description of what types of genetic variation exist, the extent and magnitude of the variation, and patterns discernable in that variation. However, such studies have focused primarily on DNA sequence data and have ignored genetic variation at other hierarchical levels of genetic information. Microarray technology permits an examination of genetic variation at the level of mRNA abundance. Utilizing a round-robin design, we present a quantitative description of variation in mRNA abundance in terms of GCA (general combining ability or additive variance). We test whether genes significant for GCA are randomly distributed across chromosomes and use a nonparametric approach to demonstrate that the magnitude of the variation is not random for GCA. We find that there is a paucity of genes significant for GCA on the X relative to the autosomes. The overall magnitude of the effects for GCA on the X tends to be lower than that on the autosomes and is contributed by rare alleles of larger effect. Due to male hemizygosity, GCA for X-linked phenotypes must be due to trans-acting factors, while GCA for autosomal phenotypes may be due to cis- or trans-acting factors. The contrast in the amount of variation between the X and the autosomes suggests that both cis and trans factors contribute to variation for expression in D. simulans with the preponderance of effects being trans. This nonrandom patterning of genetic variation in gene expression data with respect to chromosomal context may be due to hemizygosity in the male.

摘要

理解遗传变异是如何维持的,首先要全面描述存在哪些类型的遗传变异、变异的范围和程度,以及在该变异中可辨别的模式。然而,此类研究主要集中在DNA序列数据上,而忽略了遗传信息其他层次水平上的遗传变异。微阵列技术允许在mRNA丰度水平上检测遗传变异。利用循环设计,我们从一般配合力(GCA,即加性方差)的角度对mRNA丰度的变异进行了定量描述。我们测试了对GCA有显著影响的基因是否随机分布在染色体上,并使用非参数方法证明变异程度对于GCA而言并非随机的。我们发现,相对于常染色体,X染色体上对GCA有显著影响的基因较少。X染色体上GCA效应的总体大小往往低于常染色体上的,并且是由效应较大的稀有等位基因造成的。由于雄性的半合子性,X连锁表型的GCA必定归因于反式作用因子,而常染色体表型的GCA可能归因于顺式或反式作用因子。X染色体和常染色体之间变异量的差异表明,顺式和反式因子都对拟暗果蝇(D. simulans)的表达变异有贡献,其中反式作用占主导。基因表达数据中遗传变异相对于染色体背景的这种非随机模式可能是由于雄性的半合子性。

相似文献

1
Additivity and trans-acting effects on gene expression in male Drosophila simulans.
Genetics. 2004 Nov;168(3):1413-20. doi: 10.1534/genetics.104.030973.
4
Genomic analysis of the relationship between gene expression variation and DNA polymorphism in Drosophila simulans.
Genome Biol. 2008;9(8):R125. doi: 10.1186/gb-2008-9-8-r125. Epub 2008 Aug 12.
7
Cis- and trans-acting genetic factors contribute to heterogeneity in the rate of crossing over between the Drosophila simulans clade species.
J Evol Biol. 2012 Oct;25(10):2014-2022. doi: 10.1111/j.1420-9101.2012.02578.x. Epub 2012 Jul 23.
8
Contrasting patterns of X-linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans.
Mol Biol Evol. 2001 Mar;18(3):279-90. doi: 10.1093/oxfordjournals.molbev.a003804.
9
Demasculinization of X chromosomes in the Drosophila genus.
Nature. 2007 Nov 8;450(7167):238-41. doi: 10.1038/nature06330.
10
Reduced X-linked nucleotide polymorphism in Drosophila simulans.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5960-5. doi: 10.1073/pnas.97.11.5960.

引用本文的文献

1
Widespread misregulation of inter-species hybrid transcriptomes due to sex-specific and sex-chromosome regulatory evolution.
PLoS Genet. 2021 Mar 5;17(3):e1009409. doi: 10.1371/journal.pgen.1009409. eCollection 2021 Mar.
3
Polymorphism and Divergence of Novel Gene Expression Patterns in .
Genetics. 2020 Sep;216(1):79-93. doi: 10.1534/genetics.120.303515. Epub 2020 Jul 31.
4
Support for the Dominance Theory in Transcriptomes.
Genetics. 2018 Oct;210(2):703-718. doi: 10.1534/genetics.118.301229. Epub 2018 Aug 21.
5
- and -regulatory Effects on Gene Expression in a Natural Population of .
Genetics. 2017 Aug;206(4):2139-2148. doi: 10.1534/genetics.117.201459. Epub 2017 Jun 14.
6
Buffering of Genetic Regulatory Networks in Drosophila melanogaster.
Genetics. 2016 Jul;203(3):1177-90. doi: 10.1534/genetics.116.188797. Epub 2016 May 18.
10
Intra-specific regulatory variation in Drosophila pseudoobscura.
PLoS One. 2013 Dec 27;8(12):e83547. doi: 10.1371/journal.pone.0083547. eCollection 2013.

本文引用的文献

2
D. S. Falconer and Introduction to quantitative genetics.
Genetics. 2004 Aug;167(4):1529-36. doi: 10.1093/genetics/167.4.1529.
3
Common pattern of evolution of gene expression level and protein sequence in Drosophila.
Mol Biol Evol. 2004 Jul;21(7):1308-17. doi: 10.1093/molbev/msh128. Epub 2004 Mar 19.
4
Rapid evolution of male-biased gene expression in Drosophila.
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9894-9. doi: 10.1073/pnas.1630690100. Epub 2003 Aug 7.
5
Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors.
Nat Genet. 2003 Sep;35(1):57-64. doi: 10.1038/ng1222. Epub 2003 Aug 3.
6
Sex-dependent gene expression and evolution of the Drosophila transcriptome.
Science. 2003 Jun 13;300(5626):1742-5. doi: 10.1126/science.1085881.
7
Evolution of gene expression in the Drosophila melanogaster subgroup.
Nat Genet. 2003 Feb;33(2):138-44. doi: 10.1038/ng1086. Epub 2003 Jan 27.
9
Retroposed new genes out of the X in Drosophila.
Genome Res. 2002 Dec;12(12):1854-9. doi: 10.1101/gr.6049.
10
Cross-species hybridisation of pig RNA to human nylon microarrays.
BMC Genomics. 2002 Sep 27;3(1):27. doi: 10.1186/1471-2164-3-27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验